
SMPTE ST 2042-1 (VC-2) Quantisation
Matrix Computation Routines

Release 1.0.0

BBC

Mar 24, 2021

CONTENTS

1 vc2-make-quantisation-matrix standalone line tool 3

2 vc2_quantisation_matrices Python module usage 5

3 Derivation & Implementation 7
3.1 Motivation/background . 7
3.2 Implementation . 7
3.3 Filter noise gain . 8
3.4 From lifting to classical filters . 8
3.5 Computing quantisation matrices . 13
3.6 Convenience function . 14

Bibliography 15

Python Module Index 17

Index 19

i

ii

SMPTE ST 2042-1 (VC-2) Quantisation Matrix Computation Routines, Release 1.0.0

The vc2_quantisation_matrices package, provides both a standalone software tool and Python module
for computing ‘default’ quantisation matrices for the SMPTE ST 2042-1 VC-2 professional video codec. Specif-
ically, this software implements the procedure from section (D.3.2) for computing quantisation matrices which
achieve noise-power normalisation.

You can find the source code for vc2_quantisation_matrices on GitHub.

Note: This documentation is also available to browse online in HTML format.

CONTENTS 1

https://www.bbc.co.uk/rd/projects/vc-2
https://github.com/bbc/vc2_quantisation_matrices/
https://bbc.github.io/vc2_quantisation_matrices/

SMPTE ST 2042-1 (VC-2) Quantisation Matrix Computation Routines, Release 1.0.0

2 CONTENTS

CHAPTER

ONE

VC2-MAKE-QUANTISATION-MATRIX STANDALONE LINE TOOL

The vc2-make-quantisation-matrix command line application computes noise power normalised
quantisation matrices for arbitrary VC-2 filter configurations. This utility is installed alongside the
vc2_quantisation_matrices module.

The utility expects the following arguments:

• --wavelet-index: The index of the wavelet transform used for vertical filtering (as enumerated by
(Table 12.1) in the VC-2 specification).

• --wavelet-index-ho: The index of the wavelet transform used for horizontal filtering. (If not given,
the same wavelet specified by --wavelet-index is assumed).

• --dwt-depth: The number of 2D transform levels applied.

• --dwt-depth-ho: The number of horizontal-only transform levels to apply. (If not given, defaults to 0.)

For example, the following invocation computes the quantisation matrix for a 4-level 2D LeGall transform:

$ vc2-make-quantisation-matrix --wavelet-index 1 --dwt-depth 4
Level 0: LL: 4
Level 1: HL: 2, LH: 2, HH: 0
Level 2: HL: 4, LH: 4, HH: 2
Level 3: HL: 5, LH: 5, HH: 3
Level 4: HL: 7, LH: 7, HH: 5

3

SMPTE ST 2042-1 (VC-2) Quantisation Matrix Computation Routines, Release 1.0.0

4 Chapter 1. vc2-make-quantisation-matrix standalone line tool

CHAPTER

TWO

VC2_QUANTISATION_MATRICES PYTHON MODULE USAGE

The vc2_quantisation_matrices may be used to create quantisation matrices which normalise noise
power between transform bands. This may be done using the following function:

derive_quantisation_matrix(wavelet_index, wavelet_index_ho, dwt_depth, dwt_depth_ho)
Derive a noise-power normalising quantisation matrix for the specified wavelet transform. This quantisation
matrix will seek to cause quantisation noise-power to be spread evenly over all wavelet levels and bands.

Parameters

wavelet_index, wavelet_index_ho [vc2_data_tables.WaveletFilters
([vc2_data_tables], page 7)] The vertical and horizontal wavelet filter indices
respectively.

dwt_depth, dwt_depth_ho The wavelet transform depth (2D depth and horizontal only
depth respectively).

Returns

{level: {band: int, . . . }, . . . } A quantisation matrix, as laid out by the quant_matrix
VC-2 pseudocode function (12.4.5.3) and in vc2_data_tables.
QUANTISATION_MATRICES ([vc2_data_tables], page 8).

As an example, the quantisation matrix for a 4-level 2D LeGall transform may be found as follows:

>>> from vc2_data_tables import WaveletFilters
>>> from vc2_quantisation_matrices import derive_quantisation_matrix

>>> matrix = derive_quantisation_matrix(
... wavelet_index=WaveletFilters.le_gall_5_3, # 1
... wavelet_index_ho=WaveletFilters.le_gall_5_3, # 1
... dwt_depth=4,
... dwt_depth_ho=0,
...)

>>> from pprint import pprint
>>> pprint(matrix)
{0: {'LL': 4},
1: {'HH': 0, 'HL': 2, 'LH': 2},
2: {'HH': 2, 'HL': 4, 'LH': 4},
3: {'HH': 3, 'HL': 5, 'LH': 5},
4: {'HH': 5, 'HL': 7, 'LH': 7}}

Tip: The vc2_data_tables ([vc2_data_tables], page 3) module, used here, provides named constants for all
of the VC-2 filter types.

The returned nested dictionary structure matches the layout used by the quant_matrix() VC-2 pseudocode
function (12.4.5.3). For each transform level, the outer dictionary contains an entry with an inner dictionary giving
the quantisation index offset for each orientation. Orientations are labelled using the strings ‘L’, ‘H’, ‘LL’ ‘LH’,
‘HL’, and ‘HH’.

5

SMPTE ST 2042-1 (VC-2) Quantisation Matrix Computation Routines, Release 1.0.0

6 Chapter 2. vc2_quantisation_matrices Python module usage

CHAPTER

THREE

DERIVATION & IMPLEMENTATION

The (heavily annotated) vc2_quantisation_matrices module implements the procedure required to com-
pute quantisation matrices for arbitrary combinations of VC-2 filters and transform depths.

If you’re not interested in the details, you can skip directly to the convenience function for computing noise-power
normalising quantisation matrices: derive_quantisation_matrix().

3.1 Motivation/background

VC-2 achieves lossy compression by quantizing wavelet transform coefficients. This quantisation introduces
errors (noise) into the transformed signal. When a picture is later synthesised from these transform values, this
picture too will have added noise.

The transformed signal is broken up into several individual bands, approximately corresponding to different spatial
frequency components. Noise added to each of these bands has a differing effect on the final picture. Depending
on the specific filter in use, a certain amount of noise added in one band may have a greater impact on the final
picture than the same noise added to a different band.

As a result, a uniform source of noise (e.g. quantisation) can result in a skewed distribution of noise in the resulting
picture (e.g. excessive low- or high-frequency noise with little in other spatial frequencies). This is undesirable
since the noise level at some spatial frequencies will become much higher than it otherwise would be.

VC-2’s quantisation matrices allow the quantisation levels in different transform bands to be adjusted relative to
each other. In this way, for example, bands which are very sensitive to noise can be assigned lower quantisation
levels than bands which are relatively insensitive.

The default quantisation matrices provided with VC-2 are chosen such that quantisation noise results in noise
which is evenly spread across the frequency spectrum in the synthesised picture. It is the calculation of these
matrices which is the focus of this module.

It is worth emphasising that the default quantisation matrices are not intended to exploit psycho-visual phenomena
(for example by preserving low-frequency components at the expense of higher frequencies). VC-2 users are free
to define custom quantisation matrices which exploit these phenomena if required, but this will not be discussed
further here.

3.2 Implementation

This module performs all of the necessary steps required to compute quantisation matrices for VC-2’s wavelet
filters. Internally the SymPy computer algebra system is used for all calculations. This means that all operations
are carried out symbolically in much the same way they would be performed on paper.

7

https://www.sympy.org/

SMPTE ST 2042-1 (VC-2) Quantisation Matrix Computation Routines, Release 1.0.0

3.3 Filter noise gain

The noise-gain of a FIR filter with coefficients ℎ1, . . . , ℎ𝑚 is:√︃∑︁
𝑀

ℎ2
𝑚

This figure indicates the gain the filter will introduce to a white-noise signal. This function is implemented as:

fir_filter_noise_gain(coefficients)
Compute the noise-gain of a FIR filter with the specified list of filter coefficients.

If we make the (mostly reasonable) assumption that quantisation introduces white noise, it is the filter noise gains
(of the synthesis wavelet filters) which our quantisation matrix must attempt to even out. To be able to do this we
need to find the FIR filter coefficients which are to be fed to fir_filter_noise_gain().

3.4 From lifting to classical filters

For reasons of efficiency and perfect reconstruction, the VC-2 wavelet filters are specified in terms of lifting
operations:

HF

LF

U1 P1U2 P2 InterleaveUN PN

...

...

even samples

odd samples

Signal

HF

LF

U2P1 U2P2Split UNPN

...

...

even samples

odd samples

Signal
Full-rate

Half-rate

Half-rate

Half-rate

Half-rate

Full-rate

This figure shows both the analysis (picture to transform coefficients) and synthesis (transform coefficients to
picture) filtering processes. Both filters are defined by 𝑁 update (𝑈𝑛) and predict (𝑃𝑛) stages which operate on
sub-sampled signals. In most (but not all) of the VC-2 filters, only a single predict and update pair is used (i.e.
𝑁 = 1).

By contrast, the fir_filter_noise_gain() function requires our filters to be defined as classical Finite
Impulse Response (FIR) filters. That is, we must transform the picture above into the one below:

Signal

H0

H1 HF

LF

Signal

G0

G1

Half-rate

Half-rate

Full-rate Full-rate

8 Chapter 3. Derivation & Implementation

SMPTE ST 2042-1 (VC-2) Quantisation Matrix Computation Routines, Release 1.0.0

3.4.1 Matrix form

The first step in transforming the lifting filter representation into classical form is producing a matrix representation
for the lifting procedure.

In this section we’ll use the 𝑧-domain representation of all the filters and signals involved. (See section 7.1 in
“Ripples in Mathematics” for a targeted, whirl-wind introduction.)

The figure below shows the lifting representation of the analysis (top) and synthesis (bottom) filters again, addi-
tionally labelled according to the convention used here:

U1 P1U2 P2 Interleave

Y0

Y1

X0

X1

XSplit

even samples

odd samples

UN PN

...

...

Y
Interleaved
HF and LF
Transform

Signals

HF Signal

LF Signal

Reconstructed
Signal

even samples of
reconstructed signal

odd samples of
reconstructed signal

Interleave

X0

X1

Y0

Y1

YSplit

even samples

odd samples

X
Original
Signal

odd samples of
original signal

even samples of
original signal

Interleaved
HF and LF
Transform

Signals

LF Signal

HF Signal

U2P1 U2P2 UNPN

...

...

Using a 𝑧-domain representation then our picture signal, 𝑋(𝑧), is split into even (𝑋0(𝑧)) and odd (𝑋1(𝑧)) samples:

𝑋0(𝑧) =
∑︀

𝑛 𝑋[2𝑛]𝑧−𝑛 Even samples
𝑋1(𝑧) =

∑︀
𝑛 𝑋[2𝑛+ 1]𝑧−𝑛 Odd samples

Likewise the transform signal is made up of a Low Frequency (LF) component, 𝑌0(𝑧) and a High Frequency (HF)
component 𝑌1(𝑧). We define 𝑌 (𝑧) to be an interleaving of these two signals where the LF component makes up
the even samples and the HF component the odd samples:

𝑌0(𝑧) =
∑︀

𝑛 𝑌 [2𝑛]𝑧−𝑛 LF samples (even)
𝑌1(𝑧) =

∑︀
𝑛 𝑌 [2𝑛+ 1]𝑧−𝑛 HF samples (odd)

The resulting 𝑧-domain matrix forms of the analysis and synthesis lifting processes respectively are:[︂
𝑌0(𝑧)
𝑌1(𝑧)

]︂
=

[︂
1 −𝑈𝑁 (𝑧)
0 1

]︂ [︂
1 0

−𝑃𝑁 (𝑧) 1

]︂
· · ·

[︂
1 −𝑈2(𝑧)
0 1

]︂ [︂
1 0

−𝑃2(𝑧) 1

]︂ [︂
1 −𝑈1(𝑧)
0 1

]︂ [︂
1 0

−𝑃1(𝑧) 1

]︂ [︂
𝑋0(𝑧)
𝑋1(𝑧)

]︂
[︂
𝑋0(𝑧)
𝑋1(𝑧)

]︂
=

[︂
1 0

𝑃1(𝑧) 1

]︂ [︂
1 𝑈1(𝑧)
0 1

]︂ [︂
1 0

𝑃2(𝑧) 1

]︂ [︂
1 𝑈2(𝑧)
0 1

]︂
· · ·

[︂
1 0

𝑃𝑁 (𝑧) 1

]︂ [︂
1 𝑈𝑁 (𝑧)
0 1

]︂ [︂
𝑌0(𝑧)
𝑌1(𝑧)

]︂
Where 𝑈𝑛(𝑧) and 𝑃𝑛(𝑧) are the 𝑧-transform representations of the lifting step filters. These functions can be
found for a given wavelet transform using:

lifting_stage_to_z_transform(stage)
Given a vc2_data_tables.LiftingStage ([vc2_data_tables], page 7) describing wavelet filter
stage, return the type of lifting stage (either predict or update) and a 𝑧-domain representation of the fil-
tering operation as used in the matrix filter representation.

Parameters

stage [vc2_data_tables.LiftingStage ([vc2_data_tables], page 7)]

Returns

stage_type [StageType]

3.4. From lifting to classical filters 9

SMPTE ST 2042-1 (VC-2) Quantisation Matrix Computation Routines, Release 1.0.0

z_transform

class StageType(value)
Lifting stage type specifier.

If the left-most parts of the above matrices are multiplied together into 2× 2 matrices: H(𝑧) (the analysis filter in
matrix form) and G(𝑧) (the synthesis filter in matrix form) yielding:[︂

𝑌0(𝑧)
𝑌1(𝑧)

]︂
= H(𝑧)

[︂
𝑋0(𝑧)
𝑋1(𝑧)

]︂
[︂
𝑋0(𝑧)
𝑋1(𝑧)

]︂
= G(𝑧)

[︂
𝑌0(𝑧)
𝑌1(𝑧)

]︂
For the analysis filter and synthesis filters respectively.

The following function may be used to convert a vc2_data_tables.LiftingFilterParameters
([vc2_data_tables], page 7) into a 2× 2 matrix.

wavelet_filter_to_matrix_form(lifting_filter_parameters)
Convert a vc2_data_tables.LiftingFilterParameters ([vc2_data_tables], page 7) filter spec-
ification into 𝑧-domain matrix form.

Note: All of the wavelet specifications in the VC-2 specification (and therefore in vc2_data_tables.
LIFTING_FILTERS ([vc2_data_tables], page 7)) define synthesis filter lifting stages. As suggested by the
figures above, these are easily converted into analysis filter specifications by reversing the order and changing the
operation. The following function may be used to convert between analysis and synthesis lifting filters:

convert_between_synthesis_and_analysis(lifting_filter_parameters)
Given a synthesis wavelet filter specification, return the complementary analysis filter (or visa versa).

Parameters

lifting_filter_parameters [vc2_data_tables.LiftingFilterParameters
([vc2_data_tables], page 7)]

Returns

lifting_filter_parameters [vc2_data_tables.LiftingFilterParameters
([vc2_data_tables], page 7)]

3.4.2 Matrix form to classical form

The matrix form representation achieved above implements the following (slightly more formally illustrated, this
time) analysis/synthesis filtering processes:

X(z)
Original
signal

(full rate)

HF signal
(half rate)

LF signal
(half rate)

H(z)
(analysis) Reconstructed signal

(full rate)

X(z)G(z)
(synthesis)

zX(z)
1-sample delayed

original signal
(full rate)

X0(z)

X1(z)
odd samples

(half rate)

even samples
(half rate)

odd samples
(half rate)

even samples
(half rate)

[even, 0, even, 0, ...]
(full-rate)

Y0(z)

Y1(z)

X0(z)

X1(z)

X0(z
2)

X1(z
2)

[odd, 0, odd, 0, ...]
(full-rate)

z-1X1(z
2)

[0, odd, 0, odd, ...]
(full-rate)

In this new diagram, the ‘split’ and ‘interleave’ processes are shown in terms of their 𝑧-domain operations.

From the matrix based representation (where our filters are defined by the matrices H(𝑧) (analysis) and G(𝑧)
(synthesis) we now wish to decompose this into the classical form below:

10 Chapter 3. Derivation & Implementation

SMPTE ST 2042-1 (VC-2) Quantisation Matrix Computation Routines, Release 1.0.0

H0(z
2)

X(z)
Original
signal

(full rate) H1(z
2)

HF signal
(half-rate)

Y1(z)
[HF, 0, HF, 0, ...]

(fullrate)

Y1(z
2)

[HF, 0, HF, 0, ...]
(half rate)

LF signal
(half-rate)

[LF, 0, LF, 0, ...]
(full-rate)

[LF, 0, LF, 0, ...]
(full-rate)

Y0(z)Y0(z
2) Y0(z

2)

Y1(z
2)

G0(z
2)

G1(z
2)

Reconstructed signal
(full rate)

X(z)

[even, 0, even, 0, ...]
(full-rate)

X0(z
2)

z-1X1(z
2)

[0, odd, 0, odd, ...]
(full-rate)

In this representation, the analysis filter is defined by 𝐻0(𝑧
2) and 𝐻1(𝑧

2) and synthesis filter is defined by 𝐺0(𝑧
2)

and 𝐺1(𝑧
2).

Note: For those new to the 𝑧-transform, for some signal [𝑎0, 𝑎1, 𝑎2, . . .], whose 𝑧-transform is 𝐴(𝑧) =
𝑎0𝑧

0 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2 + . . . then 𝐴(𝑧2) = 𝑎0𝑧
0 + 𝑎1𝑧

−2 + 𝑎2𝑧
−4 + . . . which is equivalent to a signal

[𝑎0, 0, 𝑎1, 0, 𝑎2, 0, . . .].

Full-rate filter matrix

The first step is to modify the H(𝑧) and G(𝑧) filters to work on full-rate signals (i.e. to move the decimation step
after analysis or before synthesis, as illustrated below:

X(z)
Original
signal

(full rate)

HF signal
(half-rate)

LF signal
(half-rate)

H(z2)
analysis filter
with added
interleaved
zero coeffs

Reconstructed signal
(full rate)

X(z)G(z2)
synthesis filter

with added
interleaved
zero coeffs

zX(z)
1-sample delayed

original signal
(full rate)

[even, 0, even, 0, ...]
(full-rate)

Y0(z)

Y1(z)

X0(z
2)

X1(z
2)

[odd, 0, odd, 0, ...]
(full-rate)

z-1X1(z
2)

[0, odd, 0, odd, ...]
(full-rate)

[HF, 0, HF, 0, ...]
(fullrate)

[LF, 0, LF, 0, ...]
(full-rate)

Y0(z
2)

Y1(z
2)

[HF, 0, HF, 0, ...]
(half rate)

[LF, 0, LF, 0, ...]
(full-rate)

Y0(z
2)

Y1(z
2)

The modification is straight-forward – the filter coefficients are interleaved with zeros; yielding the filters H(𝑧2)
and G(𝑧2) for the analysis and synthesis stages respectively.

If we ignore the decimation and upsampling steps in the diagram above (which now directly cancel eachother out)
we get the following matrix representation:[︂

𝑌0(𝑧
2)

𝑌1(𝑧
2)

]︂
= H(𝑧2)

[︂
𝑋(𝑧)
𝑧𝑋(𝑧)

]︂
Analysis filter[︂

𝑋0(𝑧
2)

𝑋1(𝑧
2)

]︂
= G(𝑧2)

[︂
𝑌0(𝑧

2)
𝑌1(𝑧

2)

]︂
Synthesis filter

These can be written in expanded form like so:[︂
𝑌0(𝑧

2)
𝑌1(𝑧

2)

]︂
=

[︂
𝐻00(𝑧

2) 𝐻01(𝑧
2)

𝐻10(𝑧
2) 𝐻11(𝑧

2)

]︂ [︂
𝑋(𝑧)
𝑧𝑋(𝑧)

]︂
Analysis filter[︂

𝑋0(𝑧
2)

𝑋1(𝑧
2)

]︂
=

[︂
𝐺00(𝑧

2) 𝐺01(𝑧
2)

𝐺10(𝑧
2) 𝐺11(𝑧

2)

]︂ [︂
𝑌0(𝑧

2)
𝑌1(𝑧

2)

]︂
Synthesis filter

3.4. From lifting to classical filters 11

SMPTE ST 2042-1 (VC-2) Quantisation Matrix Computation Routines, Release 1.0.0

Deriving the classical analysis filter

Rewriting the matrix form of the analysis filter as two equations and rearranging:

𝑌0(𝑧
2) = 𝐻00(𝑧

2)𝑋(𝑧) + 𝑧𝐻01(𝑧
2)𝑋(𝑧)

=
(︀
𝐻00(𝑧

2) + 𝑧𝐻01(𝑧
2)
)︀
𝑋(𝑧)

𝑌1(𝑧
2) = 𝐻10(𝑧

2)𝑋(𝑧) + 𝑧𝐻11(𝑧
2)𝑋(𝑧)

=
(︀
𝐻10(𝑧

2) + 𝑧𝐻11(𝑧
2)
)︀
𝑋(𝑧)

This leads us to the following expressions for the classical analysis filter representations:

𝐻0(𝑧
2) = 𝐻00(𝑧

2) + 𝑧𝐻01(𝑧
2)

𝐻1(𝑧
2) = 𝐻10(𝑧

2) + 𝑧𝐻11(𝑧
2)

Deriving the classical synthesis filter

Next, we repeat the same process of producing a formulaic representation of the matrix equation:

𝑋even(𝑧) = 𝐺00(𝑧
2)𝑌0(𝑧

2) +𝐺01(𝑧
2)𝑌1(𝑧

2)

𝑧𝑋odd(𝑧) = 𝐺10(𝑧
2)𝑌0(𝑧

2) +𝐺11(𝑧
2)𝑌1(𝑧

2)

In the diagrams we have defined 𝑋(𝑧) = 𝑋0(𝑧
2)+ 𝑧−1𝑋1(𝑧

2). Substituting the formulae above into this expres-
sion and then rearranging we get:

𝑋(𝑧) = 𝑋0(𝑧
1) + 𝑧−1𝑋1(𝑧

2)

= 𝐺00(𝑧
2)𝑌0(𝑧

2) +𝐺01(𝑧
2)𝑌1(𝑧

2) + 𝑧−1
(︀
𝐺10(𝑧

2)𝑌0(𝑧
2) +𝐺11(𝑧

2)𝑌1(𝑧
2)
)︀

= 𝐺00(𝑧
2)𝑌0(𝑧

2) +𝐺01(𝑧
2)𝑌1(𝑧

2) + 𝑧−1𝐺10(𝑧
2)𝑌0(𝑧

2) + 𝑧−1𝐺11(𝑧
2)𝑌1(𝑧

2)

=
(︀
𝐺00(𝑧

2) + 𝑧−1𝐺10(𝑧
2)
)︀
𝑌0(𝑧

2) +
(︀
𝐺01(𝑧

2) + 𝑧−1𝐺11(𝑧
2)
)︀
𝑌1(𝑧

2)

From this we get the following expressions for the classical filter bank representation.

𝐺0(𝑧
2) = 𝐺00(𝑧

2) + 𝑧−1𝐺10(𝑧
2)

𝐺1(𝑧
2) = 𝐺01(𝑧

2) + 𝑧−1𝐺11(𝑧
2)

Implementation

The steps above which convert from the matrix representation of a filter to classical filters are implemented as:

analysis_matrix_to_classical_form(H)
Given an analysis filter matrix, H(𝑧) as produced by, e.g. wavelet_filter_to_matrix_form(),
return the equivalent pair of classical filters, 𝐻0(𝑧

2) and 𝐻1(𝑧
2).

synthesis_matrix_to_classical_form(G)
Given an synthesis filter matrix, G(𝑧) as produced by, e.g. wavelet_filter_to_matrix_form(),
return the equivalent pair of classical filters, 𝐺0(𝑧

2) and 𝐺1(𝑧
2).

The filter coefficients can then be extracted from the resulting algebraic expressions using

z_to_coeffs(poly)
Get a dictionary {delay: coeff, ...} from a z-transform expressed as a polynomial.

The returned dictionary will contain int delay values and SymPy expressions for the coefficients.

The resulting coefficients may then finally be passed to fir_filter_noise_gain() to determine the filter
noise gain for that filter.

12 Chapter 3. Derivation & Implementation

https://docs.python.org/3/library/functions.html#int

SMPTE ST 2042-1 (VC-2) Quantisation Matrix Computation Routines, Release 1.0.0

3.4.3 Convenience function

A convenience function is provided which carries out all of the above steps for synthesis filters, yielding the
low-pass band synthesis filter noise gain (𝛼) and high-pass band synthesis filter noise gain (𝛽).

wavelet_filter_to_alpha_beta(synthesis_lifting_filter_parameters)
Given synthesis filter definition (in a vc2_data_tables.LiftingFilterParameters
([vc2_data_tables], page 7)) return the low-pass and high-pass filter noise gains (𝛼 and 𝛽).

3.5 Computing quantisation matrices

The 𝛼 and 𝛽 values found by wavelet_filter_to_alpha_beta() may now be used to create the quanti-
sation matrices for a given transform.

During the VC-2 2D wavelet transform, the filtering process is applied recursively. The consequence of this is that
the noise gains accumulate (multiplicatively). This is illustrated below:

1

No transform

DC

s-1αβsα2

s-1β2sαβ

1-level 2D transform

LL HL

LH HH

sαβ
s2α4

sβ2sαβ

s2α3β

s2α2β2s2α3β

2-level 2D transform

LL HL

HL

LH HH

HHLH

sαβ

s3α5

sβ2sαβ

s2α3β

s2α2β2s2α3β

s3α4β

2-level 2D + 1-level HO transform

HL

LH HH

HHLH

HLHL
sαβ

sβ2sαβ

s2α3β

s2α2β2s2α3β

s3α4β

2-level 2D + 2-level HO transform

s4α6

s4α5β

HL

LH HH

HHLH

HLHL H

The 𝑠 term is the scaling factor due to the bit shift used by VC-2 between every transform layer. This scaling
factor is simply:

𝑠 = 2−bitshift

And is computed by:

wavelet_filter_to_synthesis_bit_shift_scale(synthesis_lifting_filter_parameters)
Given synthesis filter definition (in a vc2_data_tables.LiftingFilterParameters
([vc2_data_tables], page 7)) return the scaling factor, 𝑠, imposed after each 2D or horizontal-only
transform level.

Note: When an asymmetric transform is used, the bit shift for the horizontal transform is used (see
filter_bit_shift (15.4.2)).

The weighting of 𝛼, 𝛽 and 𝑠 for all bands and levels may be computed automatically using:

accumulated_noise_gains(alpha_v, beta_v, alpha_h, beta_h, s, dwt_depth, dwt_depth_ho)
Compute the total accumulated noise gain for all bands of a given wavelet transform.

Parameters

alpha_v, beta_v The LF and HF filter noise gains for the vertical wavelet synthesis filter
(from, e.g. wavelet_filter_to_alpha_beta()).

alpha_h, beta_h The LF and HF filter noise gains for the horizontal wavelet synthesis filter
(from, e.g. wavelet_filter_to_alpha_beta()).

s The scaling applied by the bit-shift of the horizontal wavelet synthesis filter.

dwt_depth, dwt_depth_ho The wavelet transform depth (and horizontal-only transform
depth).

Returns

3.5. Computing quantisation matrices 13

SMPTE ST 2042-1 (VC-2) Quantisation Matrix Computation Routines, Release 1.0.0

{level: {band: noise_gain, . . . }, . . . } A list with one dictionary per level in the same layout
as the quantisation matrices in vc2_data_tables.QUANTISATION_MATRICES
([vc2_data_tables], page 8).

The objective of the quantisation matrix is for quantisation to have the same impact on every band. As such we
only care about the relative noise gains. The noise gains computed by accumulated_noise_gains() can
be normalised using:

normalize_noise_gains(noise_gains)
Normalize a set of noise gains such that the minimum gain is 1.

This operation will be performed symbolically and the resulting noise gains will be SymPy values.

In principle, the values returned by normalize_noise_gains() should be used to scale the quantisation
factors used for each frequency band. In practice, VC-2 specifies quantisation factors via exponential quantisation
indices:

quantisation factor = 2
quantisation index/4

Therefore, the best approximation to the desired scaling factor is achieved by subtracting from the quantisation
index:

quantisation index adjustment = round(4 log2(normalised noise gain))

This conversion is performed by:

normalized_noise_gains_to_quantisation_matrix(normalized_noise_gains)
Given a set of normalised noise gains, returns the equivalent quantisation index adjustments.

All results will be ints.

3.6 Convenience function

A convenience function, derive_quantisation_matrix(), is provided which carries out the entire pro-
cess described above.

14 Chapter 3. Derivation & Implementation

https://docs.python.org/3/library/functions.html#int

BIBLIOGRAPHY

[vc2_data_tables] The vc2_data_tables manual.

15

https://github.com/bbc/vc2_data_tables/

SMPTE ST 2042-1 (VC-2) Quantisation Matrix Computation Routines, Release 1.0.0

16 Bibliography

PYTHON MODULE INDEX

v
vc2_quantisation_matrices, 5

17

SMPTE ST 2042-1 (VC-2) Quantisation Matrix Computation Routines, Release 1.0.0

18 Python Module Index

INDEX

A
accumulated_noise_gains() (in module

vc2_quantisation_matrices), 13
analysis_matrix_to_classical_form()

(in module vc2_quantisation_matrices), 12

C
convert_between_synthesis_and_analysis()

(in module vc2_quantisation_matrices), 10

D
derive_quantisation_matrix() (in module

vc2_quantisation_matrices), 5

F
fir_filter_noise_gain() (in module

vc2_quantisation_matrices), 8

L
lifting_stage_to_z_transform() (in mod-

ule vc2_quantisation_matrices), 9

M
module

vc2_quantisation_matrices, 5

N
normalize_noise_gains() (in module

vc2_quantisation_matrices), 14
normalized_noise_gains_to_quantisation_matrix()

(in module vc2_quantisation_matrices), 14

S
StageType (class in vc2_quantisation_matrices), 10
synthesis_matrix_to_classical_form()

(in module vc2_quantisation_matrices), 12

V
vc2_quantisation_matrices

module, 5

W
wavelet_filter_to_alpha_beta() (in mod-

ule vc2_quantisation_matrices), 13

wavelet_filter_to_matrix_form() (in mod-
ule vc2_quantisation_matrices), 10

wavelet_filter_to_synthesis_bit_shift_scale()
(in module vc2_quantisation_matrices), 13

Z
z_to_coeffs() (in module

vc2_quantisation_matrices), 12

19

	vc2-make-quantisation-matrix standalone line tool
	vc2_quantisation_matrices Python module usage
	Derivation & Implementation
	Motivation/background
	Implementation
	Filter noise gain
	From lifting to classical filters
	Computing quantisation matrices
	Convenience function

	Bibliography
	Python Module Index
	Index

