
SMPTE VC-2 Conformance Software
Release v1.0.1

BBC

Apr 21, 2021

CONTENTS

1 Introduction 1

I User’s manual 3

2 User’s guide (for codec testers) 5
2.1 Introduction . 5
2.2 Conformance Software Installation . 6
2.3 Video file format . 8
2.4 Generating test cases . 14
2.5 VC-2 decoder conformance testing procedure . 22
2.6 VC-2 encoder conformance testing procedure . 31
2.7 Testing additional bitstreams’ conformance . 37
2.8 Generating static wavelet filter analyses . 38
2.9 Codec debugging suggestions . 39
2.10 Conformance test limtations . 41

3 Software tools reference 43
3.1 vc2-test-case-generator . 43
3.2 vc2-bitstream-validator . 45
3.3 vc2-picture-compare . 46
3.4 vc2-picture-explain . 49
3.5 vc2-bitstream-viewer . 51

II Maintainer’s manual 55

4 Conformance software development guide 57
4.1 Development setup . 57
4.2 vc2_conformance internals overview . 59

5 Test case generation 63
5.1 vc2_conformance.test_cases: VC-2 codec test case generation 63
5.2 vc2_conformance.codec_features: Codec feature definitions 65

6 vc2_conformance.decoder: Reference decoder and bitstream validator 69
6.1 Usage . 69
6.2 Overview . 70
6.3 Stream I/O . 70
6.4 Conformance exceptions . 72
6.5 Sequence composition restrictions . 72
6.6 Level constraints . 73

7 vc2_conformance.encoder: Internal VC-2 encoder 75
7.1 Usage . 75

i

7.2 Bitstream conformance . 76
7.3 Exceptions . 76
7.4 Sequence header generation . 76
7.5 Picture encoding & compression . 77
7.6 Sequence generation . 79
7.7 Level constraints . 80

8 vc2_conformance.bitstream: Bitstream manipulation module 81
8.1 How the serialiser/deserialiser module is used . 81
8.2 Quick-start guide . 82
8.3 Deserialised VC-2 bitstream data types . 86
8.4 serdes: A serialiser/deserialiser framework . 93
8.5 Low-level bitstream IO . 103
8.6 Fixeddicts and pseudocode . 106
8.7 Autofill . 107
8.8 Metadata . 108

9 Test picture generation reference 109
9.1 vc2_conformance.picture_generators: Picture generators 109
9.2 vc2_conformance.dimensions_and_depths: Picture dimension and depth calculation 111
9.3 vc2_conformance.color_conversion: Color conversion routines 112
9.4 vc2_conformance.file_format: Picture file format I/O 117

10 Level constraint checking/solving reference 119
10.1 vc2_conformance.level_constraints: Level constraint definitions 119
10.2 vc2_conformance.symbol_re: Regular expressions for VC-2 sequences 122
10.3 vc2_conformance.constraint_table: A simple constraints model 128

11 vc2_conformance.pseudocode: VC-2 pseudocode function implementations 133
11.1 vc2_conformance.pseudocode.arrays . 133
11.2 vc2_conformance.pseudocode.offsetting . 133
11.3 vc2_conformance.pseudocode.parse_code_functions 134
11.4 vc2_conformance.pseudocode.picture_decoding 135
11.5 vc2_conformance.pseudocode.picture_encoding 136
11.6 vc2_conformance.pseudocode.quantization . 137
11.7 vc2_conformance.pseudocode.slice_sizes . 138
11.8 vc2_conformance.pseudocode.state . 139
11.9 vc2_conformance.pseudocode.vc2_math . 142
11.10 vc2_conformance.pseudocode.video_parameters 142
11.11 vc2_conformance.pseudocode.metadata . 144

12 Automated Static Code Verification 147
12.1 Pseudocode deviations . 147
12.2 Amendment comments . 147
12.3 Internals . 148

13 Utility module references 157
13.1 vc2_conformance.fixeddict: Fixed-key dictionaries 157
13.2 vc2_conformance.string_formatters: Value-to-string formatting utilities 160
13.3 vc2_conformance.string_utils: String formatting utilities 163
13.4 vc2_conformance.py2x_compat: Python 3.x backports 165

Bibliography 167

Index 169

ii

CHAPTER

ONE

INTRODUCTION

This is the manual for the VC-2 conformance testing software. This software is used to test implementations of
the VC-2 video codec.

Specifically, this software tests conformance with the following SMPTE standards and recommended practices:

• SMPTE ST 2042-1:20171 (VC-2)

• SMPTE ST 2042-2:20172 (VC-2 Level Definitions)

• SMPTE RP 2047-1:20093 (VC-2 Mezzanine Compression of 1080P High Definition Video Sources)

• SMPTE RP 2047-3:20164 (VC-2 Level 65 Compression of High Definition Video Sources for Use with a
Standard Definition Infrastructure)

• SMPTE RP 2047-5:20175 (VC-2 Level 66 Compression of Ultra High Definition Video Sources for use
with a High Definition Infrastructure)

Note: Throughout this software and documentation, perenthesised references of the form ‘(1.2.3)’ refer to section
numbers within the SMPTE ST 2042-1:2017 specification unless otherwise indicated.

This manual is split into two parts.

The first (shorter) part, User’s manual (page 5), is aimed at codec testers who wish to test a VC-2 codec implemen-
tation. This part includes software installation and codec testing procedures along with reference documentation
for the tools provided.

The second (longer) part, Maintainer’s manual (page 57), is aimed at developers tasked with maintaining this
software; codec testers can disregard this part. This section includes a general overview of the conformance
software internals followed by detailed reference documentation on its various components.

Finally, you can find the source code for vc2_conformance (page 59) on GitHub6.

Note: This documentation is also available to browse online in HTML format7.

1 https://ieeexplore.ieee.org/document/7967896
2 https://ieeexplore.ieee.org/document/8187792
3 https://ieeexplore.ieee.org/document/7290342
4 https://ieeexplore.ieee.org/document/7565453
5 https://ieeexplore.ieee.org/document/8019813
6 https://github.com/bbc/vc2_conformance/
7 https://bbc.github.io/vc2_conformance/

1

https://ieeexplore.ieee.org/document/7967896
https://ieeexplore.ieee.org/document/8187792
https://ieeexplore.ieee.org/document/7290342
https://ieeexplore.ieee.org/document/7565453
https://ieeexplore.ieee.org/document/8019813
https://github.com/bbc/vc2_conformance/
https://bbc.github.io/vc2_conformance/

SMPTE VC-2 Conformance Software, Release v1.0.1

2 Chapter 1. Introduction

Part I

User’s manual

3

CHAPTER

TWO

USER’S GUIDE (FOR CODEC TESTERS)

In the following sections we’ll walk through the process of installing, configuring and using the VC-2 conformance
testing software.

2.1 Introduction

In this guide we’ll walk through the steps involved in testing a VC-2 implementation for conformance to SMPTE
ST 2042-family of specifications.

2.1.1 Testing procedure overview

The conformance testing processes for decoders and encoders is outlined below.

Test
Bitstreams

& Reference
Decodings

Decoder
Under
Test

Check
Identical PASS/FAIL

Decoders are tested using a series of test bitstreams (generated using vc2-test-case-generator (page 43)). The
pictures produced by the decoder are then compared against reference decodings. If the decoded pictures are bit-
for-bit identical (as checked by vc2-picture-compare (page 46)), and the decoder did not crash, the decoder passes
the test.

Encoder
Under
Test

Bitstream
Validator

&
Decoder

Test
Pictures

Check
Similar

PASS/FAIL

Encoders are tested using a series of test pictures (generated using vc2-test-case-generator (page 43)). The en-
coded bitstreams are then fed to a bitstream validator (vc2-bitstream-validator (page 45)) which simultaneously
validates the bitstream against the specification and decodes the encoded pictures. If the bitstream is free from
technical errors, the decoded pictures are then compared with the input pictures (both visually and using vc2-
picture-compare (page 46)). If the decoded pictures are sufficiently similar to the inputs, the encoder passes the
test.

5

SMPTE VC-2 Conformance Software, Release v1.0.1

2.1.2 Guide outline

In Conformance Software Installation (page 6) we will walk through the process of installing the VC-2 confor-
mance software on your computer.

In Video file format (page 8) the simple planar raw video file format used by the conformance software is intro-
duced. You are responsible for converting between this format and the format natively accepted by the codec
under test.

In Generating test cases (page 14) we will use the vc2-test-case-generator (page 43) tool to generate a set of test
pictures and bitstreams. Because VC-2 supports such a wide variety of video formats and coding behaviours, test
cases are generated on demand to suit the particular features of a codec under test.

In VC-2 decoder conformance testing procedure (page 22) and VC-2 encoder conformance testing procedure
(page 31) we describe how the test pictures and bitstreams should be processed by the codec under test. We
also describe the procedures for verifying that the codecs behaved as expected. Additionally, in Testing addi-
tional bitstreams’ conformance (page 37) we explain how bitstreams produced outside of the conformance testing
procedures can also be tested for conformance.

In Codec debugging suggestions (page 39) we provide some advice on how to approach the problem of debugging
failing tests.

Finally, in Conformance test limtations (page 41) some of the limitations of the conformance test cases and pro-
cedures are enumerated.

So, lets move on to Conformance Software Installation (page 6). . .

2.2 Conformance Software Installation

These steps will help you install the VC-2 conformance software, along with its dependencies. The VC-2 con-
formance software is cross platform and should run on any system with a Python interpreter, however these
instructions will only cover the process under Linux.

2.2.1 Python interpreter

The VC-2 conformance software is compatible with both Python 2.7 and Python 3.6 and later. If in doubt, you
should prefer Python 3.x. You should also make sure that the pip Python package manager is also installed.

Under Debian-like Linux distributions (e.g. Ubuntu), Python and pip can be installed using:

apt install python3 python3-pip

Note: We strongly recommend running the VC-2 conformance software under the standard Python interpreter
(‘CPython’) as opposed to other Python implementations8 (such as PyPy9). These alternative implementations
are often less stable and we have not tested this software running under them. If you’re not sure which Python
interpreter you’ve got on your system you’ll almost certainly have the (correct) standard Python interpreter so
there is no need to take any action.

8 https://www.python.org/download/alternatives/
9 https://www.pypy.org/

6 Chapter 2. User’s guide (for codec testers)

https://www.python.org/download/alternatives/
https://www.pypy.org/

SMPTE VC-2 Conformance Software, Release v1.0.1

2.2.2 Installation

You can install the VC-2 conformance software using any of the methods below.

Via pip (recommended)

The VC-2 conformance software, along with all its dependencies, can be installed as follows:

$ python -m pip install --user vc2_conformance

The --user argument can be omitted for a system-wide installation (strongly not recommended) or when in-
stalling in a Python virtual environment10.

Note: If installation fails on Debian and Ubuntu systems, you might need to execute the following line prior to
the above:

$ export PIP_IGNORE_INSTALLED=0

From .tar.gz packages

If you have received a copy of the VC-2 conformance software as a collection of .tar.gz packages, these can
be installed as follows (replacing X.Y.Z with the version numbers from the files supplied):

$ python -m pip install --user vc2_data_tables-X.Y.Z.tar.gz
$ python -m pip install --user vc2_bit_widths-X.Y.Z.tar.gz
$ python -m pip install --user vc2_conformance_data-X.Y.Z.tar.gz
$ python -m pip install --user vc2_conformance-X.Y.Z.tar.gz

Note: The installation order must be as shown above.

The --user argument can be omitted for a system-wide installation (strongly not recommended) or when in-
stalling in a Python virtual environment11.

Note: If installation fails on Debian and Ubuntu systems, you might need to execute the following line prior to
the above:

$ export PIP_IGNORE_INSTALLED=0

From source (advanced)

The latest VC-2 conformance software can be installed from the source as follows.

First, you must checkout (or download a snapshot of) the following repositories:

• https://github.com/bbc/vc2_data_tables

• https://github.com/bbc/vc2_bit_widths

• https://github.com/bbc/vc2_conformance_data

• https://github.com/bbc/vc2_conformance

Next, each package should be installed (in the order shown above) using the following steps:
10 https://docs.python.org/3/tutorial/venv.html
11 https://docs.python.org/3/tutorial/venv.html

2.2. Conformance Software Installation 7

https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
https://github.com/bbc/vc2_data_tables
https://github.com/bbc/vc2_bit_widths
https://github.com/bbc/vc2_conformance_data
https://github.com/bbc/vc2_conformance

SMPTE VC-2 Conformance Software, Release v1.0.1

$ cd path/to/repo/
$ pip install --user .

The --user argument can be omitted for a system-wide installation (not recommended).

All other dependencies will be downloaded automatically during the installation of these packages.

2.2.3 Verifying installation

To verify installation was successful, try running:

$ vc2-test-case-generator --version

This command should print a version number and then exit immediately. If the command cannot be found, check
your PATH includes the directory the conformance software was installed into.

Tip: Under Linux, Python usually installs programmes into $HOME/.local/bin. This can be temporarily
added to your path using:

$ export PATH="$HOME/.local/bin:$PATH"

Next, lets move on to Video file format (page 8). . .

2.3 Video file format

The VC-2 conformance software uses a simple video and metadata format to represent uncompressed pictures
consisting of a raw video file and associated JSON metadata file. This format is described below and it is left to
the codec implementer to perform any translation necessary between this format and the format expected by the
codec under test.

Below we’ll describe the file format before introducing the vc2-picture-explain utility which can aid in
understanding and displaying videos in this format.

2.3.1 Format description

Each picture in a sequence is stored as a pair of files: a file containing only raw sample values (.raw) and a
metadata file containing a JSON description of the video format and picture number (.json). Both files are
necessary in order to correctly interpret the picture data.

File names

The following naming convention is used for sequences of pictures: <name>_<number>.raw and
<name>_<number>.json where <name> is the same for every picture in the sequence and <number> starts
at 0 and increments contiguously. For example, a four picture sequence might use the following file names:

• my_sequence_0.raw

• my_sequence_0.json

• my_sequence_1.raw

• my_sequence_1.json

• my_sequence_2.raw

• my_sequence_2.json

8 Chapter 2. User’s guide (for codec testers)

SMPTE VC-2 Conformance Software, Release v1.0.1

• my_sequence_3.raw

• my_sequence_3.json

Note: The <number> part of the filename can optionally include leading zeros.

.raw (picture data) file format

The raw picture file (*.raw) contains sample values in ‘planar’ form where the values for each picture component
are stored separately as illustrated below:

Y Y Y Y ... Y C1 C1 C1 C1 ... C1 C2 C2 C2 C2 ... C2

Sample values are stored in raster scan order, starting with the top-left sample and working left-to-right then
top-to-bottom.

Samples are stored as unsigned integers in the smallest power-of-two number of bytes in which they fit. For
example:

• 1 to 8 bit formats use one byte per sample

• 9 to 16 bit formats use two bytes per sample

• 17 to 32 bit formats use four bytes per sample

• And so on. . .

Note: The luma (Y) and color difference (C1, C2) components might have different bit depths, and therefore use
a different number of bytes per sample in the raw format.

Sample values are stored in little-endian byte order, least-significant-bit aligned and zero padded.

For example, a 10 bit sample is stored as two bytes. The first byte contains the least significant eight bits of the
sample value. The two least significant bits of the second byte contain the two most significant bits of the sample
value. The six most significant bits of the second byte are all zero. This is illustrated below:

n+0

n+1

0

10 bit
value

Raw file
bytes

..
.

..
.

2.3. Video file format 9

SMPTE VC-2 Conformance Software, Release v1.0.1

.json (metadata) file format

Each raw picture file is accompanied by a metadata file with the same name but a .json extension. This file is a
UTF-8 encoded JSON (ECMA-404)12 with the following structure:

{
"picture_number": <string>,
"picture_coding_mode": <int>,
"video_parameters": <video-parameters>

}

The picture_number field gives the picture number (see section (12.2) of the VC-2 standard) as a string. This
might not be the same as the number used in the file name.

Note: A string is used for the picture_number field because JSON implementations handle large integers
inconsistently.

The picture_coding_mode indicates whether each picture corresponds to a frame (0) or a field (1) in the
video (see section (11.5)).

Note: Note that the scan format flag defined in the source_sampling field of the video_parameters
(11.4.5) does not control whether pictures correspond to frames or fields.

The video_parameters field contains an object of the following form:

<video-parameters> = {
"frame_width": <int>,
"frame_height": <int>,
"color_diff_format_index": <int>,
"source_sampling": <int>,
"top_field_first": <bool>,
"frame_rate_numer": <int>,
"frame_rate_denom": <int>,
"pixel_aspect_ratio_numer": <int>,
"pixel_aspect_ratio_denom": <int>,
"clean_width": <int>,
"clean_height": <int>,
"left_offset": <int>,
"top_offset": <int>,
"luma_offset": <int>,
"luma_excursion": <int>,
"color_diff_offset": <int>,
"color_diff_excursion": <int>,
"color_primaries_index": <int>,
"color_matrix_index": <int>,
"transfer_function_index": <int>

}

This is the same structure described in section (11.4) of the VC-2 standard and populated by the
source_parameters pseudocode function.

12 https://www.json.org/

10 Chapter 2. User’s guide (for codec testers)

https://www.json.org/

SMPTE VC-2 Conformance Software, Release v1.0.1

Computing picture component dimensions and depths

The dimensions of the Y, C1 and C2 components of each picture in the raw file can be computed from the metadata
as specified in the picture_dimensions pseudocode function from section (11.6.2) of the VC-2 standard:

picture_dimensions(video_parameters, picture_coding_mode):
state[luma_width] = video_parameters[frame_width]
state[luma_height] = video_parameters[frame_height]
state[color_diff_width] = state[luma_width]
state[color_diff_height] = state[luma_height]
color_diff_format_index = video_parameters[color_diff_format_index]
if (color_diff_format_index == 1):

state[color_diff_width] //= 2
if (color_diff_format_index == 2):

state[color_diff_width] //= 2
state[color_diff_height] //= 2

if (picture_coding_mode == 1):
state[luma_height] //= 2
state[color_diff_height] //= 2

The sample value bit depth is computed by the video_depth pseudocode function given in section (11.6.3) of
the VC-2 standard:

video_depth(video_parameters):
state[luma_depth] = intlog2(video_parameters[luma_excursion]+1)
state[color_diff_depth] = intlog2(video_parameters[color_diff_excursion]+1)

2.3.2 vc2-picture-explain utility

The VC-2 conformance software provides the vc2-picture-explain (page 49) command line utility which produces
informative explanations of the raw format used by a particular video, along with commands to display the video
directly, if possible.

For example, given a typical raw 1080i60, 10-bit 4:2:2 video file as input:

$ vc2-picture-explain picture_0.raw
Normative description
=====================

Picture coding mode: pictures_are_fields (1)

Video parameters:

* frame_width: 1920

* frame_height: 1080

* color_diff_format_index: color_4_2_2 (1)

* source_sampling: interlaced (1)

* top_field_first: True

* frame_rate_numer: 30000

* frame_rate_denom: 1001

* pixel_aspect_ratio_numer: 1

* pixel_aspect_ratio_denom: 1

* clean_width: 1920

* clean_height: 1080

* left_offset: 0

* top_offset: 0

* luma_offset: 64

* luma_excursion: 876

* color_diff_offset: 512

* color_diff_excursion: 896

* color_primaries_index: hdtv (0)
(continues on next page)

2.3. Video file format 11

SMPTE VC-2 Conformance Software, Release v1.0.1

(continued from previous page)

* color_matrix_index: hdtv (0)

* transfer_function_index: tv_gamma (0)

Explanation (informative)
=========================

Each raw picture contains a single field. The top field comes first.

Pictures contain three planar components: Y, Cb and Cr, in that order, which are
4:2:2 subsampled.

The Y component consists of 1920x540 10 bit values stored as 16 bit (2
byte) values (with the 6 most significant bits set to 0) in little-endian
byte order. Expressible values run from 0 (video level -0.07) to 1023
(video level 1.09).

The Cb and Cr components consist of 960x540 10 bit values stored as 16 bit
(2 byte) values (with the 6 most significant bits set to 0) in
little-endian byte order. Expressible values run from 0 (video level -0.57)
to 1023 (video level 0.57).

The color model uses the 'hdtv' primaries (ITU-R BT.709), the 'hdtv' color
matrix (ITU-R BT.709) and the 'tv_gamma' transfer function (ITU-R BT.2020).

The pixel aspect ratio is 1:1 (not to be confused with the frame aspect ratio).

Example FFMPEG command (informative)
====================================

The following command can be used to play back this video format using FFMPEG:

$ ffplay \
-f image2 \
-video_size 1920x540 \
-framerate 60000/1001 \
-pixel_format yuv422p10le \
-i picture_%d.raw \
-vf weave=t,yadif

Where:

* `-f image2` = Read pictures from individual files

* `-video_size 1920x540` = Picture size (not frame size).

* `-framerate 60000/1001` = Picture rate (not frame rate)

* `-pixel_format` = Specifies raw picture encoding.

* `yuv` = Y C1 C2 color.

* `422` = 4:2:2 color difference subsampling.

* `p` = Planar format.

* `10le` = 10 bit little-endian values, LSB-aligned within 16 bit words.

* `-i /tmp/picture_%d.raw` = Input raw picture filename pattern

* `-vf` = define a pipeline of video filtering operations

* `weave=t` = interleave pairs of pictures, top field first

* `yadif` = (optional) apply a deinterlacing filter for display purposes

This command is provided as a minimal example for basic playback of this raw
video format. While it attempts to ensure correct frame rate, pixel aspect
ratio, interlacing mode and basic pixel format, color model options are omitted
due to inconsistent handling by FFMPEG.

Example ImageMagick command (informative)
===

(continues on next page)

12 Chapter 2. User’s guide (for codec testers)

SMPTE VC-2 Conformance Software, Release v1.0.1

(continued from previous page)

No ImageMagick command is available for this raw picture format (Unsupported bit
depth: 10 bits).

Here, the ‘explanation’ section provides a human readable description of the raw format. This might be of help
when trying to interpret the raw video data.

Example invocations of FFmpeg’s13 ffplay command and ImageMagick’s14 convert command are provided,
when possible, for displaying the raw picture data directly.

Tip: The sample ffplay commands generated by vc2-picture-explain assume the number in each
filename does not contain leading zeros. If your filenames contain leading zeros, replace the %d in the picture
filenames in the generated commands with %02d (or with 2 set to however many digits are used) to handle this
situation.

2.3.3 Tip: Splitting and combining picture data files

Many codec implementations natively produce or expect a raw video format where picture data is stored concate-
nated in a single file rather than as individual files. If individual pictures within a concatenated video format use
the same representation as the conformance software, the following commands can be used to convert picture data
between single-file and file-per-picture forms.

Note: All of the commands below assume you are using a Bash shell and GNU implementations of standard
POSIX tools.

Warning: The commands described below only deal with picture data (*.raw) files. You will still need to
process the metadata (*.json files) by other means.

Combining pictures

To concatenate a series of (for example) 8 picture data (*.raw) files numbered 0 to 7 into a single file, cat can be
used:

$ cat picture_{0..7}.raw > video.raw

Warning: The explicit use of the Bash {0..7} range specifier is preferred over using a simple wildcard
(e.g. *). This is because the order in which the individual pictures are listed by the wildcard expansion is not
well defined.

13 https://ffmpeg.org/
14 https://imagemagick.org/

2.3. Video file format 13

https://ffmpeg.org/
https://imagemagick.org/

SMPTE VC-2 Conformance Software, Release v1.0.1

Splitting concatenated pictures

To split a series of pictures concatenated together in a single file into individual pictures, split can be used:

$ split \
video.raw \
-b 12345 \
-d \
--additional-suffix=".raw" \
picture_

• The file to be split is given as the first argument (video.raw in this example)

• The -b 12345 argument defines the number of bytes in each picture and 12345 should be replaced with
the correct number for the format used.

• The -d argument causes split to number (rather than letter) each output file.

• The --additional-suffix argument ensures the output filenames end with .raw.

• Final argument gives the start of the output filenames (picture_ in this example)

Tip: An easy way to determine the picture size for a given video format is to use the wc command to get the size
of a picture file generated by the conformance software. For example:

$ wc -c path/to/picture_0.raw
12345

Tip: The split command adds leading zeros in the picture numbers of the output files. These will not be found
by the sample ffplay commands generated by vc2-picture-explain. Replace the %d in the picture
filenames in the generated commands with %02d to handle this situation.

Next, let’s walk through the process of generating test cases in Generating test cases (page 14).

2.4 Generating test cases

Test cases for VC-2 encoders and decoders are generated by the vc2-test-case-generator (page 43) program.
Below we’ll walk through the process of defining the capabilities of our codec in a ‘codec features’ file and then
generating the test cases accordingly.

2.4.1 Defining codec features

In order to generate an appropriate set of test cases for a VC-2 encoder or decoder we must first enumerate the
capabilities of that codec in a codec features file. This file must contain a table, in Comma Separated Values (CSV)
format enumerating codec configurations to be tested. An example table is given below:

name hd_lossy hd_fragmented hd_lossless custom_8_bit_rgb

(11.2.1)
level unconstrained unconstrained unconstrained unconstrained
profile high_quality high_quality high_quality high_quality

(11.1)
base_video_format hd1080p_50 hd1080p_50 hd1080p_50 hd1080p_50

continues on next page

14 Chapter 2. User’s guide (for codec testers)

SMPTE VC-2 Conformance Software, Release v1.0.1

Table 1 – continued from previous page
picture_coding_mode pictures_are_frames pictures_are_frames pictures_are_frames pictures_are_frames

(11.4.3)
frame_width default default default 640
frame_height default default default 480

(11.4.4)
color_diff_format_index default default default color_4_4_4

(11.4.5)
source_sampling default default default progressive
top_field_first default default default TRUE

(11.4.6)
frame_rate_numer default default default 25
frame_rate_denom default default default 1

(11.4.7)
pixel_aspect_ratio_numer default default default 1
pixel_aspect_ratio_denom default default default 1

(11.4.8)
clean_width default default default 640
clean_height default default default 480
left_offset default default default 0
top_offset default default default 0

(11.4.9)
luma_offset default default default 0
luma_excursion default default default 255
color_diff_offset default default default 0
color_diff_excursion default default default 255

(11.4.10)
color_primaries_index default default default hdtv
color_matrix_index default default default rgb
transfer_function_index default default default tv_gamma

(12.4.1) and (12.4.4.1)
wavelet_index le_gall_5_3 le_gall_5_3 le_gall_5_3 le_gall_5_3
wavelet_index_ho le_gall_5_3 le_gall_5_3 le_gall_5_3 le_gall_5_3
dwt_depth 2 2 2 2
dwt_depth_ho 0 0 0 0

(12.4.5.2)
slices_x 240 240 240 80
slices_y 135 135 135 60

Slice size, etc.
lossless FALSE FALSE TRUE FALSE
picture_bytes 1296000 1296000 230400
fragment_slice_count 0 8 0 0

(12.4.5.3)
continues on next page

2.4. Generating test cases 15

SMPTE VC-2 Conformance Software, Release v1.0.1

Table 1 – continued from previous page
quantization_matrix default default default 4 2 2 0 4 4 2

A CSV version of this table can be downloaded here15.

The first row should provide a unique name for each codec configuration for which test cases are to be gener-
ated with the left-most cell containing the text name. The remaining rows specify the parameters which define
the codec configurations. Empty rows and rows whose first column starts with a # are ignored (i.e. treated as
comments).

The following parameters must be given for each codec configuration.

level Integer or alias. The VC-2 level number (see annex (C.3)) to report in the bit stream. If not 0 (the
‘unconstrained’ level), the remaining parameters below must be set to values compatible with this level,
otherwise the test case generator will reject the codec configuration.

The following aliases can be used in place of an integer for additional readability.

Level Alias
0 unconstrained
1 sub_sd
2 sd
3 hd
4 d_cinema_2k
5 d_cinema_4k
6 uhdtv_4k
7 uhdtv_8k
64 progressive_hd_over_sdi
65 hd_over_sd_sdi
66 uhd_over_hd_sdi

profile Integer or alias. The VC-2 profile number (see annex (C.2)). 0 for ‘low-delay’ or 3 for ‘high quality’.

The following aliases can be used in place of an integer for additional readability.

Profile Alias
0 low_delay
3 high_quality

picture_coding_mode Integer or alias. The picture coding mode to use (see section (11.5)).

The following aliases can be used in place of an integer for additional readability.

Picture Coding Mode Alias
0 pictures_are_frames
1 pictures_are_fields

base_video_format Integer or alias. The base video format index to use (see section (11.3) and annex (B)).

The following aliases can be used in place of an integer for additional readability.

15 https://bbc.github.io/vc2_conformance/_static/user_guide/sample_codec_features.csv

16 Chapter 2. User’s guide (for codec testers)

https://bbc.github.io/vc2_conformance/_static/user_guide/sample_codec_features.csv

SMPTE VC-2 Conformance Software, Release v1.0.1

Base Video Format Alias
0 custom_format
1 qsif525
2 qcif
3 sif525
4 cif
5 foursif525
6 foursif
7 sd_480i_60
8 sd576i_50
9 hd720p_60
10 hd720p_50
11 hd1080i_60
12 hd1080i_50
13 hd1080p_60
14 hd1080p_50
15 dc2k
16 dc4k
17 uhdtv4k_60
18 uhdtv4k_50
19 uhdtv8k_60
20 uhdtv8k_50
21 hd1080p_24
22 sd_pro486

Note: This parameter is provided as a convenient way of setting the video parameters below to common
sets of options. This parameter, and the options below, do not directly define how the video format is
encoded in bitstreams – this will be determined automatically by the test case generator. In fact, the test
case generator will produce test cases with several different encodings when possible.

frame_width and frame_height Integer or default. The dimensions of frames (not pictures) of video
(see section (11.4.3)). If default, uses the dimensions specified by the base_video_format.

color_diff_format_index Integer, alias or default. The color difference subsampling mode to use
(see section (11.4.4)). If default, uses the mode specified by the base_video_format.

The following aliases can be used in place of an integer for additional readability.

Index Alias
0 color_4_4_4
1 color_4_2_2
2 color_4_2_0

source_sampling Integer, alias or default. The scan format to use (see section (11.4.5)). If default,
uses the mode specified by the base_video_format.

The following aliases can be used in place of an integer for additional readability.

Index Alias
0 progressive
1 interlaced

Note: This parameter is used as metadata only. It should not be confused with the
picture_coding_mode parameter which determines whether each picture in a sequence contains a

2.4. Generating test cases 17

SMPTE VC-2 Conformance Software, Release v1.0.1

whole frame or a field of video.

top_field_first TRUE, FALSE or default. Indicates, for interlaced formats, whether the earlier field
in a sequence contains the top field of a frame (TRUE) or bottom field (FALSE) (see section (11.4.5)). If
default, uses the mode specified by the base_video_format.

frame_rate_numer and frame_rate_denom Integers or default. The frame rate (see section
(11.4.6)). If default, uses the mode specified by the base_video_format.

pixel_aspect_ratio_numer and pixel_aspect_ratio_denom Integers or default. The pixel
aspect ratio (see section (11.4.7)). If default, uses the mode specified by the base_video_format.

clean_width, clean_height, left_offset and top_offset Integers or default. The clean area
(see section (11.4.8)). If default, uses the mode specified by the base_video_format.

luma_offset, luma_excursion, color_diff_offset and color_diff_excursion Integers or
default. The luma and color difference picture component signal ranges (see section (11.4.9)). If
default, uses the mode specified by the base_video_format.

color_primaries_index, color_matrix_index and transfer_function_index Integers,
aliases or default. color specification options (see section (11.4.10)). If default, uses the mode
specified by the base_video_format.

The following aliases can be used in place of an integer for additional readability.

Color Primaries Index Alias
0 hdtv
1 sdtv_525
2 sdtv_625
3 d_cinema
4 uhdtv

Color Matrix Index Alias
0 hdtv
1 sdtv
2 reversible
3 rgb
4 uhdtv

Transfer Function Index Alias
0 tv_gamma
1 extended_gamut
2 linear
3 d_cinema
4 perceptual_quantizer
5 hybrid_log_gamma

wavelet_index and wavelet_index_ho Integers or aliases. Wavelet transform types to use vertically
and horizontally, respectively (see sections (11.4.1) and (11.4.4.1)). For symmetric transforms, these values
must be the same.

The following aliases can be used in place of an integer for additional readability.

18 Chapter 2. User’s guide (for codec testers)

SMPTE VC-2 Conformance Software, Release v1.0.1

Index Alias
0 deslauriers_dubuc_9_7
1 le_gall_5_3
2 deslauriers_dubuc_13_7
3 haar_no_shift
4 haar_with_shift
5 fidelity
6 daubechies_9_7

dwt_depth and dwt_depth_ho Integers. Wavelet transform depths to use for both dimensions and horizon-
tally only, respectively (see sections (11.4.1) and (11.4.4.1)). For symmetric transforms, dwt_depth_ho
must be 0.

slices_x and slices_y Integers. The number of horizontal and vertical picture slices to use (see section
(12.4.5.2)).

lossless Boolean. If FALSE, test cases will be generated for a constant bit rate (lossy) codec. If TRUE test
cases will be generated for a lossless (variable bit rate) codec. Lossless mode is only supported by the high
quality profile.

picture_bytes Integer or blank. The number of bytes to use to encode the slices in each picture. Must be an
integer when lossless is FALSE and blank when lossless is TRUE.

For the low delay profile, this sets the slice_bytes_numerator and
slice_bytes_denominator values used by the stream (see section (13.5.3.2)) to the value
picture_bytes divided by the number of slices per picture.

For the high quality profile, when lossless is FALSE, slices are assigned sizes using the same formula
as used for the low delay profile. When lossless is TRUE, slices are sized as small as possible for the
data they hold.

Note: This value only accounts for picture slice data, i.e. the data read by the slice pseudocode function
in section (13.5.3). It does not take into account other stream overheads (e.g. sequence headers and trans-
form parameters). As such the resulting stream will have a slightly higher bit rate than picture_bytes
bytes per picture.

fragment_slice_count Integer.

If zero, non-fragmented picture coding is used: each picture will be coded as a single picture parse data
unit.

If greater than zero, fragmented picture mode will be used (see section (14)). Pictures will be coded as
several fragment parse data units containing at most fragment_slice_count slices each.

quantization_matrix List of space-separated integers or default. Specifies the quantization matrix to
be used.

If default, the default quantisation matrix for the wavelet transform specified by wavelet_index,
wavelet_index_ho, dwt_depth and dwt_depth_ho will be used (see annexe (D.2)).

If a list of space separated integers are provided defining a quantisation matrix, these will be used instead
and encoded as a custom quantisation matrix in the stream (see (12.4.5.3)).

Quantisation matrix values, if provided, should be given in the same order they would appear in the stream
as defined by the quant_matrix pseudocode function (12.4.5.3). For example for a transform with
dwt_depth = 1 and dwt_depth_ho = 2, the following value:

0 1 2 3 4 5

Describes the following quantization matrix:

2.4. Generating test cases 19

SMPTE VC-2 Conformance Software, Release v1.0.1

{
0: {"L": 0},
1: {"H": 1},
2: {"H": 2},
3: {"HL": 3, "LH": 4, "HH": 5},

}

If a non default value is given, the majority (though not all) generated test cases will use the supplied
quantization matrix (with the custom_quant_matrix flag set (12.4.5.3)).

2.4.2 Generating test cases

Once a codec features CSV has been created, with columns covering the major operating modes of the codec to
be tested, the vc2-test-case-generator (page 43) command can be used to generate test cases.

In the simplest case, the command should be provided with the filename of your codec features CSV:

$ vc2-test-case-generator path/to/codec_features.csv

By default, a test_cases directory will be created into which the test cases are written. This can be changed
using the --output <path> argument. The --verbose option can be used to keep track of progress.

If only test cases for an encoder are required, the --encoder-only option can be given. Alternatively if only
decoder test cases are needed --decoder-only can be used. By default, test cases are generated for both
encoders and decoders.

Before any test cases are generated, the test case generator internally generates and then validates a simple test
stream for each column of the codec features table. This step ensures that the codec features specified are not
in conflict with themselves or the VC-2 standard. If this step fails, an error message is produced indicating the
problem and test case generation is aborted.

If you are using a wavelet transform combination or depth for which a default quantization matrices are not
provided in the VC-2 specification (see annexe (D.2)), the test case generator will produce the following warning:

WARNING:root:No static analysis available for the wavelet used by codec '<name>'.
→˓Signal range test cases cannot be generated.

See Generating static wavelet filter analyses (page 38) for instructions on this specific case.

Warning messages are otherwise only produced for degenerate codec configurations. It is very unlikely a useful
codec configuration will result in a warning. If any are produced, check the values in your codec features CSV if
warnings are encountered.

Test case generation typically requires several hours, depending on the codec feature sets provided.

Note: The slow runtime performance of the VC-2 conformance software is an unfortunate side effect of it being
based on the pseudocode published in the VC-2 specification. This design gives a high degree of confidence that
it is consistent with the specification at the cost of slow execution.

20 Chapter 2. User’s guide (for codec testers)

SMPTE VC-2 Conformance Software, Release v1.0.1

2.4.3 Parallel test case generation

To speed up test case generation on multi-core systems, independent test cases can be generated in parallel. To
do this, the --parallel argument is used. Instead of generating test cases, when --parallel is used, the
test case generator will print a series of commands which can be executed in parallel to generate the test cases, for
example using GNU Parallel16:

$ # Write test case generation commands to 'commands.txt'
$ vc2-test-case-generator path/to/codec_features.csv --parallel > commands.txt

$ # Run test case generation in parallel using GNU Parallel
$ parallel -a commands.txt

Warning: Some test cases require relatively large quantities of RAM during test case generation. You might
need to reduce the number of commands run in parallel if your system runs out of memory. If you’re using
GNU parallel, the -j N argument can be used to set the number of parallel jobs to N (with the default being
however many CPU cores are available).

2.4.4 Directory structure

The test case generator produces a directory structure as outlined below:

• test_cases/

– <codec feature set name>/

* decoder/ – Test VC-2 bitstreams for decoders.

· <test-case-name>.vc2 – VC-2 bitstream to be decoded.

· <test-case-name>_metadata.json – Optional metadata file provided for
some tests

· <test-case-name>_expected/ – Reference decoding of the bitstream.

· picture_<N>.raw

· picture_<N>.json

* encoder/ – Test raw video streams for encoders.

· <test-case-name>_metadata.json – Optional metadata file provided for
some tests

· <test-case-name>/ – Raw video to be encoded

· picture_<N>.raw

· picture_<N>.json

The testing procedures for decoders and encoders are described in the next two sections:

• VC-2 decoder conformance testing procedure (page 22)

• VC-2 encoder conformance testing procedure (page 31)

16 https://www.gnu.org/software/parallel/

2.4. Generating test cases 21

https://www.gnu.org/software/parallel/

SMPTE VC-2 Conformance Software, Release v1.0.1

2.5 VC-2 decoder conformance testing procedure

The VC-2 decoder conformance testing procedure is described below. In summary, each of the bitstreams gener-
ated in the previous step (Generating test cases (page 14)), we will be decoded using the candidate decoder and
the resulting raw video compared with a reference decoding.

Note: Whilst it is possible to carry out the decoder testing procedure manually, we recommend producing a script
to automate the steps required for the particular decoder being tested.

2.5.1 Decoding the reference bitstreams

For each codec feature set provided, a set of bitstreams which test different decoder behaviours are pro-
duced. These are located in files whose names match the pattern <codec feature set name>/decoder/
<test-case-name>.vc2. The specific test cases generated will vary depending on the codec features speci-
fied.

Each bitstream must be decoded independently by the decoder under test. The decoded pictures must then be
stored as raw video as described in the Video file format (page 8) section.

2.5.2 Checking the decoded pictures

Each bitstream has an associated reference decoding in the <codec feature set name>/decoder/
<test-case-name>_expected/ directory. The output of the decoder under test must be identical to the
reference decoding.

The vc2-picture-compare (page 46) tool is provided for comparing decoder outputs with the reference decodings.
It takes as argument either the names of two raw picture files, or the names of two directories containing numbered
raw picture files. Differences between pictures are then reported.

For example:

$ vc2-picture-compare expected/ actual/
Comparing expected/picture_0.raw and actual/picture_0.raw

Pictures are identical
Comparing expected/picture_1.raw and actual/picture_1.raw

Pictures are identical
Comparing expected/picture_2.raw and actual/picture_2.raw

Pictures are identical
Summary: 3 identical, 0 different

Note: When provided with two directories to compare the vc2-picture-compare (page 46) tool will ignore all but
the numercial part of the filenames when matching pictures together. Differing names or uses (and non-uses) of
leading zeros are ignored. For example, it would compare two files named expected/picture_12.raw and
actual/image_0012.raw.

For a test case to pass:

• The vc2-picture-compare (page 46) tool must report Pictures are identical, with no warnings,
for every picture in the reference decoding.

• No additional pictures must have been decoded by the decoder under test.

• The decoder under test must not have crashed or indicated an error condition while decoding the bitstream.

For a decoder to pass the conformance test, all test cases, for all supported codec feature sets must pass. If any
tests fail, this indicates that the decoder is non-conformant to the VC-2 specification.

22 Chapter 2. User’s guide (for codec testers)

SMPTE VC-2 Conformance Software, Release v1.0.1

The section below outlines the purpose of each test case and gives advice on what that case failing could indi-
cate. Alternatively, once all decoder tests have passed, we can continue onto VC-2 encoder conformance testing
procedure (page 31).

2.5.3 Decoder Test Cases

The purpose of each test case (or group of test cases), along with advice on debugging failing tests is provided
below. In all test cases, the bitstream provided is a valid bitstream permitted by the spec.

Decoder test case: absent_next_parse_offset

Tests handling of missing ‘next parse offset’ field.

The ‘next parse offset’ field of the parse_info header (see (10.5.1)) can be set to zero (i.e. omitted) for pictures.
This test case verifies that decoders are still able to decode streams with this field absent.

Decoder test case: concatenated_sequences

Tests that streams containing multiple concatenated sequences can be decoded.

A stream consisting of the concatenation of two sequences (10.3) with one frame each, the first picture is given
picture number zero in both sequences.

Decoder test case: custom_quantization_matrix

Tests that a custom quantization matrix can be specified.

A series of bitstreams with different custom quantisation matrices are generated as follows:

custom_quantization_matrix[zeros] Specifies a custom quantisation matrix with all matrix values
set to zero.

custom_quantization_matrix[arbitrary] Specifies a custom quantisation matrix with all matrix
values set to different, though arbitrary, values.

custom_quantization_matrix[default] Specifies a custom quantisation matrix containing the same
values as the default quantisation matrix. This test case is only generated when a default quantization matrix
is defined for the codec.

These test cases are only generated when permitted by the VC-2 level in use.

Note: For lossy coding modes, the encoded picture will contain a noise signal (see the static_noise
(page 30) test case).

For lossless coding modes, the encoded picture will be the test pattern used by the lossless_quantization
(page 26) test case. This test pattern is designed to be losslessly encodable when some quantization is applied.

2.5. VC-2 decoder conformance testing procedure 23

SMPTE VC-2 Conformance Software, Release v1.0.1

Decoder test case: dangling_bounded_block_data

Tests that transform values which lie beyond the end of a bounded block are read correctly.

Picture slices (13.5.3) and (13.5.4) contain transform values in bounded blocks (A.4.2). These test cases include
bounded blocks in which some encoded values lie off the end of the block. Specifically, the following cases are
tested:

dangling_bounded_block_data[zero_dangling]
(1)
Zero

A zero value (1 bit) is encoded entirely beyond the end of the bounded block.

dangling_bounded_block_data[sign_dangling]

X 0 X 1 (1)0
SignStopBit BitStart Next

The final bit (the sign bit) of a non-zero exp-golomb value is dangling beyond the end of the bounded block.

dangling_bounded_block_data[stop_and_sign_dangling]

0 X 0 X (1) (1)
SignStopBit BitStart Next

The final two bits (the stop bit and sign bit) of a non-zero exp-golomb value are dangling beyond the end of
the bounded block.

dangling_bounded_block_data[lsb_stop_and_sign_dangling]

X 0 X 0 (1) (1) (1)0
BitNextBit BitStart Next SignStop

The final three bits (the least significant bit, stop bit and sign bit) of a non-zero exp-golomb value are
dangling beyond the end of the bounded block.

Note: The value and magnitudes of the dangling values are chosen depending on the wavelet transform in use
and might differ from the illustrations above.

Decoder test case: default_quantization_matrix

Tests that the default quantization matrix can be used.

This test case is only generated when a non default value is specified for the quantization_matrix codec
features CSV entry but when a default quantization matrix is defined.

Note: This is the only test case which sets the custom_quant_matrix flag (12.4.5.3) to 0 when a
quantization_matrix is supplied in the codec features CSV.

Note: For lossy coding modes, the encoded picture will contain a noise signal (see the static_noise
(page 30) test case).

For lossless coding modes, the encoded picture will be the test pattern used by the lossless_quantization
(page 26) test case. This test pattern is designed to be losslessly encodable when some quantization is applied.

24 Chapter 2. User’s guide (for codec testers)

SMPTE VC-2 Conformance Software, Release v1.0.1

Decoder test case: extended_transform_parameters

Tests that extended transform parameter flags are handled correctly.

Ensures that extended transform parameters fields (12.4.4) are correctly handled by decoders for symmetric trans-
form modes.

extended_transform_parameters[asym_transform_index_flag] Verifies that
asym_transform_index_flag can be set to 1.

extended_transform_parameters[asym_transform_flag] Verifies that
asym_transform_flag can be set to 1.

These test cases are skipped for streams whose major version is less than 3 (which do not support the extended
transform parameters header). Additionally, these test cases are skipped for asymmetric transforms when the flag
being tested must already be 1.

Decoder test case: interlace_mode_and_pixel_aspect_ratio

Tests that the interlacing mode and pixel aspect ratio is correctly decoded.

These tests require that the decoded pictures are observed using the intended display equipment for the decoder to
ensure that the relevant display metadata is passed on.

interlace_mode_and_pixel_aspect_ratio[static_sequence] A single frame containing a
stationary graphic at the top-left corner on a black background, as illustrated below.

Correct Wrong Field Order Wrong Pixel Aspect Ratio

If the field ordering (i.e. top field first flag, see (7.3) and (11.3)) has been decoded correctly, the edges
should be smooth. If the field order has been reversed the edges will appear jagged.

If the pixel aspect ratio (see (11.4.7)) has been correctly decoded, the white triangle should be as wide as it
is tall and the ‘hole’ should be circular.

interlace_mode_and_pixel_aspect_ratio[moving_sequence] A sequence of 10 frames con-
taining a graphic moving from left to right along the top of the frame. In each successive frame, the graphic
moves 16 luma samples to the right (i.e. 8 samples every field, for interlaced formats).

2.5. VC-2 decoder conformance testing procedure 25

SMPTE VC-2 Conformance Software, Release v1.0.1

Progressive (Frame 0) Progressive (Frame 1) Progressive (Frame 2)

Interlaced (Frame 0) Interlaced (Frame 1) Interlaced (Frame 2)

For progressive formats, the graphic should appear with smooth edges in each frame.

For interlaced formats, the graphic should move smoothly when displayed on an interlaced monitor. If
displayed as progressive frames (as in the illustration above), the pictures will appear to have ragged edges.

Decoder test case: lossless_quantization

Tests support for quantization in lossless decoders.

Quantization can, in principle, be used in lossless coding modes in cases where all transform coefficients are
divisible by the same factor. This test case contains a synthetic test pattern with this property.

This test case is only generated for lossless codecs.

Note: For informational purposes, an example decoded test pattern is shown below:

Note the faint repeating pattern.

26 Chapter 2. User’s guide (for codec testers)

SMPTE VC-2 Conformance Software, Release v1.0.1

Decoder test case: padding_data

Tests that the contents of padding data units are ignored.

This test case consists of a sequence containing two blank frames in which every-other data unit is a padding data
unit (10.4.5) of various lengths and contents (described below).

padding_data[empty] Padding data units containing zero padding bytes (i.e. just consisting of a parse info
header).

padding_data[zero] Padding data units containing 32 bytes set to 0x00.

padding_data[non_zero] Padding data units containing 32 bytes containing the ASCII encoding of the
text Ignore this padding data please!.

padding_data[dummy_end_of_sequence] Padding data units containing 32 bytes containing an encod-
ing of an end of sequence data unit (10.4.1).

Where padding data units are not permitted by the VC-2 level in use, these test cases are omitted.

Decoder test case: picture_numbers

Tests picture numbers are correctly read from the bitstream.

Each test case contains 8 blank pictures numbered in a particular way.

picture_numbers[start_at_zero] The first picture has picture number 0.

picture_numbers[non_zero_start] The first picture has picture number 1000.

picture_numbers[wrap_around] The first picture has picture number 4294967292, with the picture
numbers wrapping around to 0 on the 4th picture in the sequence.

picture_numbers[odd_first_picture] The first picture has picture number 7. This test case is only
included when the picture coding mode is 0 (i.e. pictures are frames) since the first field of each frame must
have an even number when the picture coding mode is 1 (i.e. pictures are fields) (11.5).

Decoder test case: real_pictures

Tests real pictures are decoded correctly.

A series of three still photographs.

Frame 0 Frame 1 Frame 2

Note: The images encoded in this sequence are generated from 4256 by 2832 pixel, 4:4:4, 16 bit, standard
dynamic range, RGB color images with the ITU-R BT.709 gamut. As such, the decoded pictures might be of re-
duced technical quality compared with the capabilities of the format. The rescaling, color conversion and encoding
algorithms used are also basic in nature, potentially further reducing the picture quality.

2.5. VC-2 decoder conformance testing procedure 27

SMPTE VC-2 Conformance Software, Release v1.0.1

Decoder test case: repeated_sequence_headers

Tests the decoder can handle a stream with repeated sequence headers.

This test case consists of a sequence containing two frames in which the sequence header is repeated before every
picture.

This test will be omitted if the VC-2 level prohibits the repetition of the sequence header.

Decoder test case: signal_range

Tests that a decoder has sufficient numerical dynamic range.

These test cases contain a series of pictures containing test patterns designed to produce extreme signals within
decoders. During these test cases, no integer clamping (except for final output clamping) or integer overflows
must occur.

A test case is produced for each picture component:

signal_range[Y] Luma component test patterns.

signal_range[C1] Color difference 1 component test patterns.

signal_range[C2] Color difference 2 component test patterns.

These test cases are produced by encoding pictures consisting test patterns made up of entirely of legal (in range)
signal values. Nevertheless, the resulting bitstreams produce large intermediate values within a decoder, though
these are not guaranteed to be worst-case.

Note: For informational purposes, an example of a set of test patterns before and after encoding and quantisation
is shown below:

Original Image Decoder Output

Note: The quantization indices used for lossy codecs are chosen to maximise the peak signal range produced
by the test patterns. These are often higher than a typical VC-2 encoder might pick for a given bit rate but are
nevertheless valid.

An informative metadata file is provided along side each test case which gives, for each picture in the bitstream, the
parts of a decoder which are being tested by the test patterns. See vc2_bit_widths.helpers.TestPoint
([vc2_bit_widths], page 40) for details.

28 Chapter 2. User’s guide (for codec testers)

SMPTE VC-2 Conformance Software, Release v1.0.1

Decoder test case: slice_padding_data

Tests that padding bits in picture slices are ignored.

Picture slices (13.5.3) and (13.5.4) might contain padding bits beyond the end of the transform coefficients for
each picture component. These test cases check that decoders correctly ignore these values. Padding values will
be filled with the following:

slice_padding_data[slice_?_all_zeros] Padding bits are all zero.

slice_padding_data[slice_?_all_ones] Padding bits are all one.

slice_padding_data[slice_?_alternating_1s_and_0s] Padding bits alternate between one and
zero, starting with one.

slice_padding_data[slice_?_alternating_0s_and_1s] Padding bits alternate between zero
and one, starting with zero.

slice_padding_data[slice_?_dummy_end_of_sequence] Padding bits will contain bits which
encode an end of sequence data unit (10.6).

The above cases are repeated for the luma and color difference picture components as indicated by the value
substituted for ? in the test case names above. For low-delay pictures these will be Y (luma) and C (interleaved
color difference). For high quality pictures these will be Y (luma), C1 (color difference 1) and C2 (color difference
2).

Decoder test case: slice_prefix_bytes

Tests the decoder can handle a non-zero number of slice prefix bytes.

Produces test cases with a non-zero number of slice prefix bytes containing the following values:

slice_prefix_bytes[zeros] All slice prefix bytes are 0x00.

slice_prefix_bytes[ones] All slice prefix bytes are 0xFF.

slice_prefix_bytes[end_of_sequence] All slice prefix bytes contain bits which encode an end of
sequence data unit (10.4).

These test cases apply only to the high quality profile and are omitted when the low delay profile is used.

Decoder test case: slice_size_scaler

Tests that the ‘slice_size_scaler’ field is correctly handled.

This test case generates a sequence which sets slice_size_scaler value (13.5.4) 1 larger than it otherwise would be.

This test case is only generated for the high quality profile, and levels which permit a slice size scaler value greater
than 1.

Decoder test case: source_parameters_encodings

Tests the decoder can decode different encodings of the video format metadata.

This series of test cases each contain the same source parameters (11.4), but in different ways.

source_parameters_encodings[custom_flags_combination_?_base_video_format_?]
For these test cases, the base video format which most closely matches the desired video format is used.
Each test case incrementally checks that source parameters can be explicitly set to their desired values (e.g.
by setting custom_*_flag bits to 1).

source_parameters_encodings[base_video_format_?] These test cases, check that other base
video formats can be used (and overridden) to specify the desired video format. Each of these test cases will
explicitly specify as few video parameters as possible (e.g. setting as many custom_*_flag fields to 0
as possible).

2.5. VC-2 decoder conformance testing procedure 29

SMPTE VC-2 Conformance Software, Release v1.0.1

Tip: The vc2-bitstream-viewer (page 51) can be used to display the encoding used in a given test case as follows:

$ vc2-bitstream-viewer --show sequence_header path/to/test_case.vc2

Note: Some VC-2 levels constrain the allowed encoding of source parameters in the bit stream and so fewer test
cases will be produced in this instance.

Note: Not all base video formats can be used as the basis for encoding a specific video format. For example, the
‘top field first’ flag (11.3) set by a base video format cannot be overridden. As a result, test cases will not include
every base video format index.

Decoder test case: static_gray

Tests that the decoder can decode a maximally compressible sequence.

This sequence contains an image in which every transform coefficient is zero. For most color specifications
(11.4.10), this decodes to a mid-gray frame.

This special case image is maximally compressible since no transform coefficients need to be explicitly coded in
the bitstream. For lossless coding modes, this will also produce produce the smallest possible bitstream.

Decoder test case: static_noise

Tests that decoder correctly decodes a noise plate.

A static frame containing pseudo-random uniform noise as illustrated below:

Decoder test case: static_ramps

Tests that decoder correctly reports color encoding information.

This test requires that the decoded pictures are observed using the intended display equipment for the decoder to
ensure that the relevant color coding metadata is passed on.

A static frame containing linear signal ramps for white and primary red, green and blue (in that order, from
top-to-bottom) as illustrated below:

30 Chapter 2. User’s guide (for codec testers)

SMPTE VC-2 Conformance Software, Release v1.0.1

The color bands must be in the correct order (white, red, green, blue from top to bottom). If not, the color
components might have been ordered incorrectly.

The red, green and blue colors should correspond to the red, green and blue primaries for the color specification
(11.4.10.2).

Note: When D-Cinema primaries are specified (preset color primaries index 3), red, green and blue are replaced
with CIE X, Y and Z respectively. Note that these might not represent physically realisable colors.

The left-most pixels in each band are notionally video black and the right-most pixels video white, red, green and
blue (respectively). That is, oversaturated signals (e.g. ‘super-blacks’ and ‘super-white’) are not included.

Note: For lossy codecs, the decoded signal values might vary due to coding artefacts.

The value ramps in the test picture are linear, meaning that the (linear) pixel values increase at a constant rate
from left (black) to right (saturated white/red/green/blue). Due to the non-linear response of human vision, this
will produce a non-linear brightness ramp which appears to quickly saturate. Further, when a non-linear transfer
function is specified (11.4.10.4) the raw decoded picture values will not be linearly spaced.

Note: When the D-Cinema transfer function is specified (preset transfer function index 3), the saturated signals
do not correspond to a non-linear signal value of 1.0 but instead approximately 0.97. This is because the D-Cinema
transfer function allocates part of its nominal output range to over-saturated signals.

2.6 VC-2 encoder conformance testing procedure

The VC-2 encoder conformance testing procedure is described below. In summary, the raw video test sequences
generated in the Generating test cases (page 14) step will be encoded using the candidate encoder. The resulting
bitstream will then be checked using the vc2-bitstream-validator (page 45) and encoded pictures compared with
the originals for similarity.

Note: Whilst it is possible to carry out the encoder testing procedure manually, we recommend producing a script
to automate most of the steps required for the particular encoder being tested. You must still take care to manually
inspect and compare all decoded pictures, however.

2.6. VC-2 encoder conformance testing procedure 31

SMPTE VC-2 Conformance Software, Release v1.0.1

2.6.1 Encoding the reference bitstreams

For each codec feature set provided, a set of raw videos are produced. These are located in directories match-
ing the pattern <codec feature set name>/encoder/<test-case-name>/. The specific test cases
generated will vary depending on the codec features specified.

Each test case must be encoded independently by the encoder under test and the encoded bitstreams stored on
disk. The encoder must not crash or produce any warnings when encoding these test sequences.

2.6.2 Checking the encoded bitstreams

Each encoded bitstream must be checked with the vc2-bitstream-validator (page 45). This tool simultaneously
verifies that the bitstream meets the requirements of the VC-2 specification and provides a reference decoding of
the stream.

The tool takes a VC-2 bitstream as argument and optionally an output name for the decoded pictures, as illustrated
below:

$ mkdir real_pictures_decoded
$ vc2-bitstream-validator \

real_pictures.vc2 \
--output real_pictures_decoded/picture_%d.raw

If the bitstream is valid, the following message will be produced:

No errors found in bitstream. Verify decoded pictures to confirm conformance.

Otherwise, if a conformance error is found, processing will stop and a detailed error message will be produced
explaining the problem.

Once a bitstream has been validated and decoded using vc2-bitstream-validator (page 45), the vc2-picture-
compare (page 46) command is used to compare the output against the original pictures. The script must be
provided with two raw picture filenames, or two directory names containing raw pictures. One should contain the
original images, and the other its encoded then decoded counterpart. The similarity of the images will be reported.
For example:

$ vc2-picture-compare real_pictures/ real_pictures_decoded/
Comparing real_pictures/picture_0.raw and real_pictures_decoded/picture_0.raw

Pictures are different:
Y: Different: PSNR = 55.6 dB, 1426363 pixels (68.8%) differ
C1: Different: PSNR = 57.7 dB, 662607 pixels (63.9%) differ
C2: Different: PSNR = 56.8 dB, 703531 pixels (67.9%) differ

Comparing real_pictures/picture_1.raw and real_pictures_decoded/picture_1.raw
Pictures are different:
Y: Different: PSNR = 55.6 dB, 1426363 pixels (68.8%) differ
C1: Different: PSNR = 57.7 dB, 662607 pixels (63.9%) differ
C2: Different: PSNR = 56.8 dB, 703531 pixels (67.9%) differ

Comparing real_pictures/picture_2.raw and real_pictures_decoded/picture_2.raw
Pictures are different:
Y: Different: PSNR = 55.6 dB, 1426363 pixels (68.8%) differ
C1: Different: PSNR = 57.7 dB, 662607 pixels (63.9%) differ
C2: Different: PSNR = 56.8 dB, 703531 pixels (67.9%) differ

Summary: 0 identical, 3 different

Note: When provided with two directories to compare the vc2-picture-compare (page 46) tool will ignore all but
the numercial part of the filenames when matching pictures together. Differing names or uses (and non-uses) of
leading zeros are ignored. For example, it would compare two files named expected/picture_12.raw and
actual/image_0012.raw.

For a test case to pass:

32 Chapter 2. User’s guide (for codec testers)

SMPTE VC-2 Conformance Software, Release v1.0.1

• The encoder must not raise an error condition during encoding.

• The vc2-bitstream-validator (page 45) must not find any errors in the bit stream.

• For lossless encoders, vc2-picture-compare (page 46) tool must report Pictures are identical,
with no warnings, for every picture in the reference decoding.

• For lossy encoders, vc2-picture-compare (page 46) tool might report a difference and the quoted PSNR
figure should be checked to ensure it is appropriate for the intended application of the codec.

• Input and output pictures must be visually compared and should be sufficiently similar as to be suitable for
the intended application of the codec.

• No additional pictures must have been decoded.

Tip: When viewing pictures using the ffplay commands suggested by vc2-picture-explain (page 49) you might
sometimes find it helpful to use a very low frame rate or playback the sequence in a loop.

To reduce the frame rate such that each frame is shown for 5 seconds, replace the value after -framerate with
1/5.

To loop the sequence indefinately add -loop 0 to the command.

For an encoder to pass the conformance test, all test cases, for all supported codec feature sets must pass. If any
tests fail, this indicates that the encoder is non-conformant to the VC-2 specification.

The section below outlines the purpose of each test case and gives advice on what that case failing might indicate.

2.6.3 Encoder test cases

The purpose of each test case (or group of test cases), along with advice on debugging failing tests is provided
below.

Encoder test case: real_pictures

Tests real pictures are encoded sensibly.

This test contains a series of three still photographs of natural scenes with varying levels of high and low spatial
frequency content.

Frame 0 Frame 1 Frame 2

Note: The source images for this test case are generated from 4256 by 2832 pixel, 4:4:4, 16 bit, standard dynamic
range, RGB color images with the ITU-R BT.709 gamut. As such, the pictures might be of reduced technical
quality compared with the capabilities of the format. The rescaling and color conversion algorithms used are also
basic in nature, potentially further reducing the picture quality.

2.6. VC-2 encoder conformance testing procedure 33

SMPTE VC-2 Conformance Software, Release v1.0.1

Encoder test case: signal_range

Tests that an encoder has sufficient numerical dynamic range.

These test cases contain test patterns designed to produce extreme signals within encoders. During these test cases,
no integer clamping or overflows must occur.

A test case is produced for each picture component:

signal_range[Y] Luma component test patterns.

signal_range[C1] Color difference 1 component test patterns.

signal_range[C2] Color difference 2 component test patterns.

Though the test patterns produce near worst case signal levels, they are not guaranteed to produce the largest
values possible.

Note: For informational purposes, an example of a set of test patterns are shown below:

An informative metadata file is provided along side each test case which gives, for each picture in the bitstream, the
parts of a encoder which are being tested by the test patterns. See vc2_bit_widths.helpers.TestPoint
([vc2_bit_widths], page 40) for details.

Encoder test case: synthetic_gray

Tests that the encoder can encode a maximally compressible sequence.

This sequence contains an image in which every transform coefficient is zero. For most color specifications
(11.4.10), this decodes to a mid-gray frame.

This special case image is maximally compressible since no transform coefficients need to be explicitly coded in
the bitstream. For lossless coding modes, this should also produce produce the smallest possible bitstream.

Encoder test case: synthetic_linear_ramps

Tests that an encoder correctly encodes color specification information.

A static frame containing linear signal ramps for white and primary red, green and blue (in that order, from
top-to-bottom) as illustrated below:

34 Chapter 2. User’s guide (for codec testers)

SMPTE VC-2 Conformance Software, Release v1.0.1

The red, green and blue colors correspond to the red, green and blue primaries for the color specification
(11.4.10.2).

Note: When D-Cinema primaries are specified (preset color primaries index 3), red, green and blue are replaced
with CIE X, Y and Z respectively. Note that these might not represent physically realisable colors.

The left-most pixels in each band are video black and the right-most pixels video white, red, green and blue
(respectively). That is, oversaturated signals (e.g. ‘super-blacks’ and ‘super-white’) are not included.

The value ramps in the test picture are linear meaning that the (linear) pixel values increase at a constant rate
from left (black) to right (saturated white/red/green/blue). Due to the non-linear response of human vision, this
will produce a non-linear brightness ramp which appears to quickly saturate. Further, when a non-linear transfer
function is specified (11.4.10.4) the raw picture values will not be linearly spaced.

Note: When the D-Cinema transfer function is specified (preset transfer function index 3), the saturated signals
do not correspond to a non-linear signal value of 1.0 but instead approximately 0.97. This is because the D-Cinema
transfer function allocates part of its nominal output range to over-saturated signals.

Encoder test case: synthetic_moving_sprite

Tests that an encoder produces sensible results for motion.

A sequence of 10 frames containing a graphic moving from left to right along the top of the frame. In successive
each frame, the graphic moves 16 luma samples to the right (i.e. 8 samples every field, for interlaced formats).

2.6. VC-2 encoder conformance testing procedure 35

SMPTE VC-2 Conformance Software, Release v1.0.1

Progressive (Frame 0) Progressive (Frame 1) Progressive (Frame 2)

Interlaced (Frame 0) Interlaced (Frame 1) Interlaced (Frame 2)

For progressive formats, the graphic should appear with smooth edges in each frame.

For interlaced formats, the graphic should move smoothly when displayed on an interlaced monitor. If displayed
as progressive frames (as in the illustration above), the pictures will appear to have ragged edges.

Encoder test case: synthetic_noise

Tests that an encoder correctly encodes a noise plate.

A static frame containing pseudo-random uniform noise as illustrated below:

Note: It is likely that lossy encoders will be unable to compress this test case without a fairly significant loss of
fidelity. As such, it is acceptable for this test case for an encoder to produce only visually similar results.

36 Chapter 2. User’s guide (for codec testers)

SMPTE VC-2 Conformance Software, Release v1.0.1

2.7 Testing additional bitstreams’ conformance

the vc2-bitstream-validator (page 45) tool can be used to test any VC-2 bitstreams, including those produced
outside of the conformance testing procedures. For example, you might wish to test how an encoder behaves
with your own test materials. Alternatively you might have existing bitstreams which you would like to validate,
perhaps because a decoder you’re testing is having trouble with them.

2.7.1 Bitstream validation

Any existing bitstream can be validated following a similar manner to the VC-2 encoder conformance testing
procedure (page 31) using the vc2-bitstream-validator (page 45) command like so:

$ vc2-bitstream-validator \
my_bitstream.vc2 \
--output my_decoded_picture_%d.raw

Note: The bitstream validator always produces a decoded output. If --output is not given, the decoded pictures
will still be produced but given the default name picture_%d.raw.

If the bitstream is valid, the following message will be produced:

No errors found in bitstream. Verify decoded pictures to confirm conformance.

Otherwise, if a conformance error is found, processing will stop and a detailed error message will be produced
explaining the problem.

Once a bitstream has been validated by vc2-bitstream-validator (page 45), you can view the decoded pictures to
verify that the bitstream contained the pictures and metadata you expected. You might wish to use vc2-picture-
explain (page 49) to produce an ffmpeg or ImageMagick command to do this.

2.7.2 Decoded picture validation

The vc2-bitstream-validator (page 45) tool will correctly decode any valid VC-2 bitstream. You can therefore use
its output to validate that a decoder has correctly decoded a given bitstream. The vc2-bitstream-compare command
can be used to compare a decoder’s output with that of the bitstream validator in a manner similar to the VC-2
decoder conformance testing procedure (page 22):

$ vc2-picture-compare expected/ actual/
Comparing expected/picture_0.raw and actual/picture_0.raw

Pictures are identical
Comparing expected/picture_1.raw and actual/picture_1.raw

Pictures are identical
Comparing expected/picture_2.raw and actual/picture_2.raw

Pictures are identical
Summary: 3 identical, 0 different

A conformant decoder must produce identical results to the vc2-bitstream-validator (page 45) command.

2.7. Testing additional bitstreams’ conformance 37

SMPTE VC-2 Conformance Software, Release v1.0.1

2.8 Generating static wavelet filter analyses

Note: This section does not apply to most codecs. You can skip this section if your codec only uses combina-
tions of wavelet transforms and depths for which a default quantisation matrix is defined in annex (D) (even if you
don’t use the default quantisation matrix).

The generation of certain test cases requires a mathematical analysis of the wavelet filter used by the codec under
test. The VC-2 conformance software is supplied with analyses for all wavelet filter configurations for which a
default quantisation matrix is defined in annex (D). If your codec uses a wavelet and depth combination for which
no default quantisation matrix is defined, a suitable analysis must be produced to enable tests to be generated for
this codec. The steps below walk through the process of using the vc2-static-filter-analysis tool to
produce the required analyses.

2.8.1 Step 1: Generating static analyses

Static analyses must be created for every wavelet transform used by your codec (including those with a default
quantisation matrix).

The vc2-static-filter-analysis command (provided by the vc2_bit_widths ([vc2_bit_widths],
page 33) package) is used to generate a mathematical analysis of arbitrary VC-2 filter configurations.

For example, to analyse a filter which:

• Uses the Haar (with shift) filter (wavelet index 4) vertically

• Uses the Le Gall (5, 3) filter (wavelet index 1) horizontally

• With a 2 level 2D transform depth

• And 1 level horizontal-only transform depth

The following command is used:

$ vc2-static-filter-analysis \
--wavelet-index 4 \
--wavelet-index-ho 1 \
--dwt-depth 2 \
--dwt-depth-ho 1 \
--output filter_analysis.json

This command will compute the static analysis and write them to filter_analysis.json.

For modest transform depths, this process should take a few seconds. For larger transforms, this command can
take several minutes or even hours to execute so the --verbose option can be added to track progress. For
extremely large filters, see the vc2_bit_widths ([vc2_bit_widths], page 33) package’s user guide for further
guidance.

2.8.2 Step 2: Bundling static analyses

Once static analyses have been produced for all required wavelets, these must be combined into an analysis bundle
file as follows:

$ vc2-bundle create bundle.zip \
--static-filter-analysis path/to/analyses/*.json

38 Chapter 2. User’s guide (for codec testers)

SMPTE VC-2 Conformance Software, Release v1.0.1

2.8.3 Step 3: Run test case generation

Finally, to use the generated filter analyses during test case generation, the VC2_BIT_WIDTHS_BUNDLE envi-
ronment variale must be set to the location of the bundle file generated in step 2. For example:

$ export VC2_BIT_WIDTHS_BUNDLE="path/to/bundle.zip"
$ vc2-test-case-generator path/to/codec_features.csv

2.9 Codec debugging suggestions

The following sections provide suggestions for tackling some of the issues which can be found in encoders and
decoders.

2.9.1 Encoder bitstream conformance issues

When validating an encoded bitstream with the vc2-bitstream-validator (page 45) tool, conformance issues often
relate to syntactic features of the bitstream format itself. Consequently, it can be useful to inspect the bitstream in
a human-readable form using the vc2-bitstream-viewer (page 51) tool.

Every conformance error message includes a ‘Suggested bitstream viewer commands’ section which provides a
sample invocation of the vc2-bitstream-viewer (page 51) command intended to display just the problematic region
in the bitstream. See the vc2-bitstream-viewer documentation (page 51) for a more detailed guide to the bitstream
viewer.

In addition, error messages also provide a traceback of the pseudocode functions in the VC-2 specification which
were running at the time of the error. It might be helpful to compare the logic in the relevant pseudocode functions
side-by-side with the corresponding logic in an encoder when tracing an issue.

2.9.2 Decoder bitstream syntax issues

Many decoder test cases are designed to exercise specific syntactic features of the VC-2 bitstream. If a decoder
is encountering difficulties with a test case, it might be helpful to use the vc2-bitstream-viewer (page 51) tool to
display a human-readable version of the test case bitstream.

The --hide slice argument can be used to suppress the printing of picture slice data when this is not relevant.
This dramatically reduces the quantity of output produced by the tool.

The --offset <bit offset> argument can be used to display only the part of a bitstream within a few bits
of the specified bit (not byte) offset into the file. This might be useful when you know where in a decoder had read
up to when it failed.

The --show <pseudocode function name> argument can be used to filter the bitstream viewer output.
This argument takes the name of a pseudocode function in the VC-2 specification and shows only parts of the
bitstream read by that function.

The --show-internal-state argument causes the bitstream viewer to print (a subset of) the contents of
the state variable used by the VC-2 pseudocode. This might be useful if a decoder appears to be correctly
deserialising a stream but is interpreting its meaning differently.

See the vc2-bitstream-viewer documentation (page 51) for a complete guide to using this tool.

2.9. Codec debugging suggestions 39

SMPTE VC-2 Conformance Software, Release v1.0.1

2.9.3 Signal range test cases

The decoder signal_range (page 28) and encoder signal_range (page 34) test cases are designed
to result in large, near worst case, numerical values within a codec’s wavelet transform. These tests are intended
to determine if a codec has used integers of sufficient size for their wavelet transform implementation.

If these test cases do not pass, it is likely that the codec being tested has used integers too small for the wavelet
transform and picture bit depths in use. Try increasing the size of the integers used to hold intermediate wavelet
transform values.

Typical symptoms of codecs with insufficiently large integers are the infrequent production of easily visible arte-
facts such as illustrated below:

Warning: It is extremely easy to under-estimate the size of integers required within a codec, and within
decoders especially. In particular, the peak signal levels produced within a codec can differ by multiple orders
of magnitude between different pictures. Even large suites of test material (whether pictures or noise) are
unlikely to reach worst-case signal levels within every wavelet transform stage. Because peak levels vary so
much between pictures, the possibility of encountering occasional near-worst case signals in production is
actually relatively high.

The test signals used in these test cases are designed to achieve near worst case signal levels in every intermediate
value of VC-2’s wavelet transform but true worst-case signal levels might be larger still. This limitation arises
from a number of factors:

• The full VC-2 encoder-decoder signal chain is a non-linear system and so it is not possible to directly
compute worst-case inputs or signal levels. Instead, the test patterns in these test cases are derived from
heuristics and so cannot guarantee worst-case behaviour.

• The decoder test cases make some assumptions about encoder behaviours, since VC-2 does not specify
an encoder design. Consequently it is possible that an encoder might produce outputs which yield higher
worst-case signal levels.

• These test signals assume the wavelet transform is carried out as outlined in the VC-2 pseudocode. Alter-
native implementations might have different worst-case characteristics.

For more in-depth information on codec integer bit width selection for VC-2 implementations, see the
vc2_bit_widths ([vc2_bit_widths], page 33) package documentation.

40 Chapter 2. User’s guide (for codec testers)

SMPTE VC-2 Conformance Software, Release v1.0.1

2.10 Conformance test limtations

The conformance testing procedures outlined in the previous sections are unable to guarantee the overall con-
formance of an implementation – only their conformance with respect to particular bitstreams or pictures. Fur-
thermore, not every possible combination of features are verified, though care has been taken to include any
combinations likely to uncover issues.

There are also a small number of VC-2 features which are only tested to a limited extent by the generated test
cases. Some of these are listed below.

Longer sequences The conformance test cases all consist of relatively short test sequences. Since VC-2 is an
intra-frame only codec, codecs should only maintain limited state between pictures and so be insensitive to
sequence length and so this limitation of the test suite should be immaterial.

Mixing fragmented and non-fragmented picture data units The VC-2 standard does not prohibit the use of
fragmented and non-fragmented pictures within the same sequence. No test cases are generated to test this
esoteric case, however, since this is unlikely to be used in practice.

Quantisation in lossless formats Lossless formats can use quantization where transform coefficients happen to
be multiples of the quantisation factor. Because quantisation can, in the general case, result in larger inter-
mediate signals within a decoder, it is not appropriate to use lossily encoded test signals to test a lossless
decoder’s support for quantisation. As a result, a special test case is provided for lossless decoders which
uses quantisation but ensures safe signal ranges.

Auxiliary data-units Auxiliary data units (10.4.4) are not included in any tests. This is because the contents of
such units are not defined by the VC-2 standard and so in the event that a particular codec supported some
form of auxiliary data stream, its format would not be known to the conformance software. Likewise, the
contents of any auxiliary data units produced by an encoder under test will be ignored by this software.

Variable slice sizes In all non-lossless mode test cases, high quality picture slices are sized to (approximately)
the same number of bytes each. Although in principle other modes of operation are possible (e.g. buffer-
based byte allocation), these are not the intended mode of operation for VC-2 and would be too numerous
to comprehensively test.

Changing wavelet transform mid sequence All test cases use the same wavelet transform and slice parameters
for every picture in the sequence. Though the VC-2 specification permits these parameters to change mid-
sequence, this is not the intended mode of operation for VC-2. Because of this, and the number of test cases
which would be required, this scenario is not tested.

Degenerate formats The test case generator cannot generate test cases for all degenerate video formats. For
example, picture component bit depths of greater than 32 bits or absurd transform depths are not supported.

Differences from specification The SMPTE ST 2042-1:2017 specification contains a small number of minor
errors. In these cases, this software assumes the intention of the specification.

2.10. Conformance test limtations 41

SMPTE VC-2 Conformance Software, Release v1.0.1

42 Chapter 2. User’s guide (for codec testers)

CHAPTER

THREE

SOFTWARE TOOLS REFERENCE

This chapter contains reference documentation and basic usage examples for each of the command line tools
included with the VC-2 conformance software. In summary, these are:

vc2-test-case-generator (page 43) Generates test cases (i.e. pictures and bitstreams) for testing the conformance
of VC-2 encoders and decoders.

vc2-bitstream-validator (page 45) Validates the conformance of a VC-2 bitstream and produces a reference de-
coding.

vc2-picture-compare (page 46) Compares pairs of pictures.

vc2-picture-explain (page 49) Produces informative explanations of the video formats written and accepted by
the VC-2 conformance software. (See Video file format (page 8)).

vc2-bitstream-viewer (page 51) Produces a human-readable low-level description of VC-2 bitstreams.

3.1 vc2-test-case-generator

This application generates test cases for VC-2 encoders and decoders given a set of codec features to target.

• For a guide to the codec features CSV file format see Defining codec features (page 14)

• For a guide to encoder test cases see Encoder test cases (page 33)

• For a guide to decoder test cases see Decoder Test Cases (page 23)

3.1.1 Usage

A codec features CSV file should be created (as described in Generating test cases (page 14)). This can then be
processed by vc2-test-case-generator to generate test cases for the codecs supporting the specific codec
features described.

Test case generation is performed as follows:

$ vc2-test-case-generator path/to/codec_features.csv

The test cases are written to a test_cases in the current working directory. The --output argument can be
given to choose an alternative location. By default, if any existing test cases are present in the output directory,
the test case generator will not run. The --force argument can be added to run the test case generator anyway.

If only a subset of test cases are required, the following arguments can also be used:

• --encoder-only: Only generate test cases for encoders

• --decoder-only: Only generate test cases for decoders

• --codec <regexp>: Only generate test cases for codec feature sets whose names match a supplied
pattern.

43

SMPTE VC-2 Conformance Software, Release v1.0.1

3.1.2 Parallel execution

The test case generator can take many hours to run. To speed up execution, test cases can be generated in parallel
on multi-core machines. To do this the --parallel argument is added to vc2-test-case-generator.
Rather than performing test case generation, this command outputs a series of newline-separated commands which
can be executed in parallel to perform test case generation. These can then be executed, for example using GNU
Parallel17:

$ # Write test case generation commands to 'commands.txt'
$ vc2-test-case-generator path/to/codec_features.csv --parallel > commands.txt

$ # Run test case generation in parallel using GNU Parallel
$ parallel -a commands.txt

3.1.3 Static wavelet filter analyses

Some test cases require a precomputed mathematical analysis of the wavelet transform used.

The VC-2 conformance software includes suitable analyses for all wavelet transforms for which a default quan-
tisation matrix is defined in the VC-2 specification. To support additional wavelet transform combinations and
depths, additional analyses must be generated as described in Generating static wavelet filter analyses (page 38).

If the VC2_BIT_WIDTHS_BUNDLE environment variable is defined, the test case generator will attempt to read
wavelet filter analyses from the file it specifies. This must be a filter analysis bundle file created by vc2-bundle.

3.1.4 Arguments

The complete set of arguments can be listed using --help

usage: vc2-test-case-generator [-h] [--version] [--verbose] [--parallel]
[--output OUTPUT] [--force]
[--encoder-only | --decoder-only]
[--codecs REGEX]
codec_configurations

Generate test inputs for VC-2 encoder and decoder implementations.

positional arguments:
codec_configurations CSV file containing the set of codec configurations to

generate test cases for.

optional arguments:
-h, --help show this help message and exit
--version show program's version number and exit
--verbose, -v Show additional status information during execution.
--parallel, -p If given, don't generate test cases but instead

produce a series of commands on stdout which can be
executed in parallel to generate the test cases.

--output OUTPUT, -o OUTPUT
Directory name to write test cases to. Will be created
if it does not exist. Defaults to './test_cases/'.

--force, -f Force the test case generator to run even if the
output directory is not empty.

--encoder-only, -e If set, only generate test cases for VC-2 encoders.
--decoder-only, -d If set, only generate test cases for VC-2 decoders.
--codecs REGEX, -c REGEX

If given, a regular expression which selects which
codec configurations to generate test cases for. If

(continues on next page)

17 https://www.gnu.org/software/parallel/

44 Chapter 3. Software tools reference

https://www.gnu.org/software/parallel/
https://www.gnu.org/software/parallel/

SMPTE VC-2 Conformance Software, Release v1.0.1

(continued from previous page)

not given, test cases will be generated for all codec
configurations.

3.2 vc2-bitstream-validator

A command-line utility for validating VC-2 bitstreams’ conformance with the VC-2 specification and providing a
reference decoding of the pictures within.

3.2.1 Usage

This command should be passed a filename containing a candidate VC-2 bitstream. For example, given a valid
stream:

$ vc2-bitstream-validator path/to/bitstream.vc2 --output decoded_picture_%d.raw
No errors found in bitstream. Verify decoded pictures to confirm conformance.

Here the --output argument specifies the printf-style template for the decoded picture filenames. The decoded
pictures are written as raw files (see Video file format (page 8)).

If a conformance error is detected, a detailed explanation of the problem is displayed:

$ vc2-bitstream-validator invalid.vc2
Conformance error at bit offset 104
===================================

Non-zero previous_parse_offset, 5789784, in the parse info at the start of
a sequence (10.5.1).

Details

Was this parse info block copied from another stream without the
previous_parse_offset being updated?

Does this parse info block incorrectly include an offset into an adjacent
sequence?

Suggested bitstream viewer commands

To view the offending part of the bitstream:

vc2-bitstream-viewer invalid.vc2 --offset 104

Pseudocode traceback

Most recent call last:

* parse_stream (10.3)

* parse_sequence (10.4.1)

* parse_info (10.5.1)

vc2-bitstream-validator: error: non-conformant bitstream (see above)

3.2. vc2-bitstream-validator 45

SMPTE VC-2 Conformance Software, Release v1.0.1

Errors include an explanation of the conformance problem (along with references to the VC-2 standards doc-
uments) along with possible causes of the error. Additionally, a sample invocation of vc2-bitstream-viewer
(page 51) is given which can be used to display the contents of the bitstream at the offending position. Finally, a
stack trace for the VC-2 pseudocode functions involved in parsing the stream at the point of failure is also printed.

3.2.2 Arguments

The complete set of arguments can be listed using --help

usage: vc2-bitstream-validator [-h] [--version] [--no-status] [--verbose]
[--output OUTPUT]
bitstream

Validate a bitstream's conformance with the VC-2 specifications.

positional arguments:
bitstream The filename of the bitstream to validate.

optional arguments:
-h, --help show this help message and exit
--version show program's version number and exit
--no-status, --quiet, -q

Do not display a status line on stderr while
validating the bitstream.

--verbose, -v Show full Python stack-traces on failure.
--output OUTPUT, -o OUTPUT

The filename pattern for decoded picture data and
metadata. The supplied pattern should a 'printf' style
template with (e.g.) '%d' where an index will be
substituted. The first decoded picture will be
assigned index '0', the second '1' and so on -- i.e.
these indices are unrelated to the picture number. The
file extension supplied will be stripped and two files
will be written for each decoded picture: a '.raw'
planar image file and a '.json' JSON metadata file.
(Default: picture_%d.raw).

3.3 vc2-picture-compare

A command-line utility which compares pairs of raw pictures (see Video file format (page 8)), or pairs of directories
containing a series of raw pictures.

3.3.1 Usage

Given a pair of images in raw format (see Video file format (page 8)), these images can be compared as follows:

$ vc2-picture-compare image_a.raw image_b.raw
Pictures are different:

Y: Different: PSNR = 55.6 dB, 1426363 pixels (68.8%) differ
C1: Different: PSNR = 57.7 dB, 662607 pixels (63.9%) differ
C2: Different: PSNR = 56.8 dB, 703531 pixels (67.9%) differ

Alternatively a pair of directories containing images whose filenames end with a number (and the extensions .raw
and .json). For example:

46 Chapter 3. Software tools reference

SMPTE VC-2 Conformance Software, Release v1.0.1

$ vc2-picture-compare ./directory_a/ ./directory_b/
Comparing ./directory_a/picture_0.raw and ./directory_b/picture_0.raw:

Pictures are identical
Comparing ./directory_a/picture_1.raw and ./directory_b/picture_1.raw:

Pictures are different:
Y: Different: PSNR = 55.6 dB, 1426363 pixels (68.8%) differ
C1: Different: PSNR = 57.7 dB, 662607 pixels (63.9%) differ
C2: Different: PSNR = 56.8 dB, 703531 pixels (67.9%) differ

Comparing ./directory_a/picture_2.raw and ./directory_b/picture_2.raw:
Pictures are identical

Summary: 2 identical, 1 different

Differences in the encoded values are reported separately for each picture component.

Peak Signal to Noise Ratio (PSNR) figures give the PSNR of the raw integer signal values (and not, for example,
linear light levels).

Note: PSNR is computed as:

MeanSquareError =
∑︁
𝑖,𝑗

(𝐸𝑖,𝑗 −𝐴𝑖,𝑗)
2

MaxE = max
𝑖,𝑗

(𝐸𝑖,𝑗)

PSNR = 20 log10(MaxE)− 10 log10(MeanSquareError)

Where 𝐸𝑖,𝑗 is pixel (𝑖, 𝑗) of the raw integer signal value of the test image and 𝐴𝑖,𝑗 is pixel (𝑖, 𝑗) of the raw integer
values of the decoded image.

The number of pixels which are not bit-for-bit identical is also reported.

The tool also compares the metadata of the raw images and will flag up differences here too, for example:

$ vc2-picture-compare picture_hd.raw picture_cif.raw
Picture numbers are different:
Video parameters are different:

- frame_width: 1920
+ frame_width: 352
- frame_height: 1080
+ frame_height: 288
- color_diff_format_index: color_4_2_2 (1)
+ color_diff_format_index: color_4_2_0 (2)
source_sampling: progressive (0)
top_field_first: True

- frame_rate_numer: 50
+ frame_rate_numer: 25
- frame_rate_denom: 1
+ frame_rate_denom: 2
- pixel_aspect_ratio_numer: 1
+ pixel_aspect_ratio_numer: 12
- pixel_aspect_ratio_denom: 1
+ pixel_aspect_ratio_denom: 11
- clean_width: 1920
+ clean_width: 352
- clean_height: 1080
+ clean_height: 288
left_offset: 0
top_offset: 0

- luma_offset: 64
+ luma_offset: 0
- luma_excursion: 876
+ luma_excursion: 255

(continues on next page)

3.3. vc2-picture-compare 47

SMPTE VC-2 Conformance Software, Release v1.0.1

(continued from previous page)

- color_diff_offset: 512
+ color_diff_offset: 128
- color_diff_excursion: 896
+ color_diff_excursion: 255
- color_primaries_index: hdtv (0)
+ color_primaries_index: sdtv_625 (2)
- color_matrix_index: hdtv (0)
+ color_matrix_index: sdtv (1)
transfer_function_index: tv_gamma (0)

When picture metadata differs, the pixel values will not be compared since the difference in metadata typically
means a difference in format making the pictures incomparable.

3.3.2 Generating difference masks

The vc2-picture-compare tool can optionally output a simple difference mask image using
--difference-mask/-D. The generated image contains white pixels wherever the inputs differed and black
pixels wherever they were identical. The generated difference mask is output as a raw file of the same format as
the two input files. This mode is only supported when two individual files are provided, not two directories.

For example:

$ vc2-picture-compare \
image_a.raw \
image_b.raw \
--difference-mask difference_mask.raw

Pictures are different:
Y: Different: PSNR = 55.6 dB, 1426363 pixels (68.8%) differ
C1: Different: PSNR = 57.7 dB, 662607 pixels (63.9%) differ
C2: Different: PSNR = 56.8 dB, 703531 pixels (67.9%) differ

3.3.3 Arguments

The complete set of arguments can be listed using --help

usage: vc2-picture-compare [-h] [--version] [--difference-mask FILENAME]
filename_a filename_b

Compare a pair of pictures in the raw format used by the VC-2 conformance
software.

positional arguments:
filename_a The filename of a .raw or .json raw picture, or a

directory containing a series of .raw and .json files
whose names end in a number.

filename_b The filename of a .raw or .json raw picture, or a
directory containing a series of .raw and .json files
whose names end in a number.

optional arguments:
-h, --help show this help message and exit
--version show program's version number and exit

difference image options:
--difference-mask FILENAME, -D FILENAME

Output a difference mask image to the specified file.
This mask will contain white pixels wherever the input
images differ and black pixels where they match. Only
available when comparing files (not directories).

48 Chapter 3. Software tools reference

SMPTE VC-2 Conformance Software, Release v1.0.1

3.4 vc2-picture-explain

A command-line utility which provides informative descriptions the raw video format (see Video file format
(page 8)) used by the VC-2 conformance software. As well as providing an explanation of the format, where
possible sample invocations of FFmpeg18 and ImageMagick19 are provided for viewing the raw files directly.

3.4.1 Example usage

An example invocation is shown below:

$ vc2-picture-explain path/to/raw/picture_0.json
Normative description
=====================

Picture coding mode: pictures_are_fields (1)

Video parameters:

* frame_width: 720

* frame_height: 576

* color_diff_format_index: color_4_2_2 (1)

* source_sampling: interlaced (1)

* top_field_first: True

* frame_rate_numer: 25

* frame_rate_denom: 1

* pixel_aspect_ratio_numer: 12

* pixel_aspect_ratio_denom: 11

* clean_width: 704

* clean_height: 576

* left_offset: 8

* top_offset: 0

* luma_offset: 16

* luma_excursion: 219

* color_diff_offset: 128

* color_diff_excursion: 224

* color_primaries_index: sdtv_625 (2)

* color_matrix_index: sdtv (1)

* transfer_function_index: tv_gamma (0)

Explanation (informative)
=========================

Each raw picture contains a single field. The top field comes first.

Pictures contain three planar components: Y, Cb and Cr, in that order, which are
4:2:2 subsampled.

The Y component consists of 720x288 8 bit values. Expressible values run from 0
(video level -0.07) to 255 (video level 1.09).

The Cb and Cr components consist of 360x288 8 bit values. Expressible values run
from 0 (video level -0.57) to 255 (video level 0.57).

The color model uses the 'sdtv_625' primaries (ITU-R BT.601), the 'sdtv' color
matrix (ITU-R BT.601) and the 'tv_gamma' transfer function (ITU-R BT.2020).

The pixel aspect ratio is 12:11 (not to be confused with the frame aspect
ratio).

(continues on next page)

18 https://ffmpeg.org/
19 https://imagemagick.org/

3.4. vc2-picture-explain 49

https://ffmpeg.org/
https://imagemagick.org/

SMPTE VC-2 Conformance Software, Release v1.0.1

(continued from previous page)

Example FFMPEG command (informative)
====================================

The following command can be used to play back this video format using FFMPEG:

$ ffplay \
-f image2 \
-video_size 720x288 \
-framerate 50 \
-pixel_format yuv422p \
-i path/to/raw/picture_%d.raw \
-vf weave=t,yadif,scale='trunc((iw*12)/11):ih'

Where:

* `-f image2` = Read pictures from individual files

* `-video_size 720x288` = Picture size (not frame size).

* `-framerate 50` = Picture rate (not frame rate)

* `-pixel_format` = Specifies raw picture encoding.

* `yuv` = Y C1 C2 color.

* `422` = 4:2:2 color difference subsampling.

* `p` = Planar format.

* `-i path/to/raw/picture_%d.raw` = Input raw picture filename pattern

* `-vf` = define a pipeline of video filtering operations

* `weave=t` = interleave pairs of pictures, top field first

* `yadif` = (optional) apply a deinterlacing filter for display purposes

* `scale='trunc((iw*12)/11):ih'` = rescale non-square pixels for display with
square pixels

This command is provided as a minimal example for basic playback of this raw
video format. While it attempts to ensure correct frame rate, pixel aspect
ratio, interlacing mode and basic pixel format, color model options are omitted
due to inconsistent handling by FFMPEG.

Example ImageMagick command (informative)
===

The following command can be used to convert a single raw picture into PNG
format for viewing in a conventional image viewer:

$ convert \
-size 720x288 \
-depth 8 \
-sampling-factor 4:2:2 \
-interlace plane \
-colorspace sRGB \
yuv:path/to/raw/picture_0.raw \
-resize 109.0909090909091%,100% \
png24:path/to/raw/picture_0.raw

Where:

* `-size 720x288` = Picture size.

* `-depth 8` = 8 bit values.

* `-sampling-factor 4:2:2` = 4:2:2 color difference subsampling.

* `-interlace plane` = Planar format (not related to video interlace mode).

* `-colorspace sRGB` = Display as if using sRGB color.

* `yuv:` = Input is Y C1 C2 picture.

* `path/to/raw/picture_0.raw` = Input filename.

* `-resize 109.0909090909091%,100%` = rescale non-square pixels for display with

(continues on next page)

50 Chapter 3. Software tools reference

SMPTE VC-2 Conformance Software, Release v1.0.1

(continued from previous page)

square pixels

* `png24:path/to/raw/picture_0.png` = Save as 24-bit PNG (e.g. 8 bit channels)

This command is provided as a minimal example for basic viewing of pictures.
Interlacing and correct color model conversion are not implemented.

3.4.2 Arguments

The complete set of arguments can be listed using --help

usage: vc2-picture-explain [-h] [--version] filename

Informatively explain the video format used a raw video file generated by the
VC-2 conformance software.

positional arguments:
filename The filename of a .raw or .json raw video file.

optional arguments:
-h, --help show this help message and exit
--version show program's version number and exit

3.5 vc2-bitstream-viewer

A command-line utility for displaying VC-2 bitstreams in a human readable form.

The following tutorials give a higher-level introduction to this tool. Complete usage information can be obtained
by running vc2-bitstream-viewer --help.

Warning: This program prioritises correctness over performance. Internally the pseudocode from the VC-2
specification is used to drive the bitstream parser. As a consequence this program is relatively slow, e.g. taking
many seconds per HD frame.

3.5.1 Basic usage

In its simplest form, this command can be used to create a complete textual representation of a VC-2 bitstream:

$ vc2-bitstream-viewer path/to/bitstream.vc2
+- data_units:
| +- 0:
| | +- parse_info:

000000000000: | | | +- padding: 0b
000000000000: 01000010010000100100001101000100 | | | +- parse_info_prefix:
→˓Correct (0x42424344)
000000000032: 00010000 | | | +- parse_code: end_of_
→˓sequence (0x10)
000000000040: 00000000000000000000000000000000 | | | +- next_parse_offset: 0
000000000072: 00000000000000000000000000000000 | | | +- previous_parse_offset: 0

In the printed output, each value read from the bitstream is shown on its own line:

• The number at the start of the line is the offset (in bits) from the start of the file that that value begins.

3.5. vc2-bitstream-viewer 51

SMPTE VC-2 Conformance Software, Release v1.0.1

• The next value is the value in the bitstream expressed as a binary number. If values are being read from the
bounded block in the bitstream, a (*) indicates that any remaining bits in the value shown were read from
beyond the end of the block (and read as ‘1’).

• The final part of the line indicates the name and decoded value of the read data. Where possible, the names
used match the names of variables in the VC-2 pseudocode.

By default, every bit and every field in the bitstream will be visible, including padding bits.

3.5.2 Displaying an area of interest

It is possible to restrict the output to only parts of the bitstream surrounding a particular offset. For example, the
--offset/-o argument can be used to restrict display to only the parts of the bitstream surrounding a particular
bit offset:

$ vc2-bitstream-viewer bitstream.vc2 --offset 40000

See the --context/-C, --context-after/-A and --context-before/-B arguments to control the
number of bits before and after the supplied offset to be shown. Alternatively, you can also specify an explicit
range to display using the --from-offset/-f and --to-offset/-t.

Note: Though values before the specified bit offset will not be displayed, they must still be read and parsed by
the bitstream viewer in order to correctly parse what comes later in the bitstream.

3.5.3 Filtering displayed values

It is possible to filter the displayed values according to the VC-2 pseudocode function which read them. A common
case might be to show only the parse_info headers from a stream:

$ vc2-bitstream-viewer bitstream.vc2 --show parse_info

Alternatively, you might wish to show everything in a bitstream except for the transform coefficients (slice data):

$ vc2-bitstream-viewer bitstream.vc2 --hide slice

For this particular action, the convenience alias -S for --hide slice is also provided.

3.5.4 Showing VC-2 decoder state

As well as displaying a textual representation of the VC-2 bitstream, this tool can also display (a subset of) the
internal state of a VC-2 decoder based on the pseudocode in the specification at different points during bitstream
processing. Use the --show-internal-state option to enable this. This can be useful when debugging the
encoding of transform data whose organisation depends on various computed values earlier in the bitstream.

3.5.5 Malformed bitstream handling

The bitstream parser is as tolerant of malformed bitstreams as is practical and will accept, and blindly tolerate
values which are out-of-spec so long as they do not lead to undefined behaviour. In the event that the parser
encounters an anomaly that prevents it preceding further, an error will be shown and parsing will terminate.

By default, error messages show only limited information about the failure. Adding the --verbose/-v option
will cause additional details (such as the next few bits in the bitstream and details of what was being parsed at the
time.

52 Chapter 3. Software tools reference

SMPTE VC-2 Conformance Software, Release v1.0.1

3.5.6 Arguments

The complete set of arguments can be listed using --help

usage: vc2-bitstream-viewer [-h] [--version] [--no-status] [--verbose]
[--show-internal-state]
[--ignore-parse-info-prefix]
[--num-trailing-bits NUM_TRAILING_BITS]
[--from-offset BIT_OFFSET]
[--to-offset BIT_OFFSET] [--offset BIT_OFFSET]
[--after-context NUM_BITS]
[--before-context NUM_BITS] [--context NUM_BITS]
[--show FUNCTION] [--hide FUNCTION] [--hide-slice]
bitstream

Display VC-2 bitstreams in a human-readable form.

positional arguments:
bitstream The filename of the bitstream to read.

optional arguments:
-h, --help show this help message and exit
--version show program's version number and exit
--no-status, --quiet, -q

Do not display a status line on stderr while reading
the bitstream.

--verbose, -v Increase the verbosity of error messages. Used once:
also show bitstream offset, bitstream target value and
next --num-trailing-bits bits in the bitstream at the
time of the error. Used twice: also show the Python
stack trace for the error.

--show-internal-state, -i
Print the internal state variable used by the VC-2
pseudo code after parsing each data unit. Parts of the
pseudocode state not directly related to bitstream
processing might or might not be included in this
printout.

--ignore-parse-info-prefix, -p
By default, parsing is halted if an invalid parse_info
prefix is encountered. Giving this option suppresses
this check and allows parsing to continue.

--num-trailing-bits NUM_TRAILING_BITS, -b NUM_TRAILING_BITS
When --verbose is used, this argument defines the
number of bits to show from the bitstream after the
point the error occurred. (Default: 128).

range options:
--from-offset BIT_OFFSET, -f BIT_OFFSET

Don't display bitstream values until the specified bit
offset. If negative, gives an offset from the end of
the file. Default: 0.

--to-offset BIT_OFFSET, -t BIT_OFFSET
Stop reading the bitstream at the specified bit
offset. If prefixed with '+', the offset will be
relative to the offset given to '--from-offset'. If
negative, gives an offset from the end of the file.
Default: the end of the file.

--offset BIT_OFFSET, -o BIT_OFFSET
Shows the parts of the bitstream surrounding the
specified bit offset. (An alternative to manually
setting '--from-offset' and '--to-offset' to values
either-side of the chosen offset). If none of '--

(continues on next page)

3.5. vc2-bitstream-viewer 53

SMPTE VC-2 Conformance Software, Release v1.0.1

(continued from previous page)

after-context', '--before-context' or '--context' are
given, 128 bits of context either side of this offset
will be shown.

--after-context NUM_BITS, -A NUM_BITS
Sets the number of bits after '--around-offset' to be
shown.

--before-context NUM_BITS, -B NUM_BITS
Sets the number of bits before '--around-offset' to be
shown.

--context NUM_BITS, -C NUM_BITS
Sets the number of bits before and after '--around-
offset' to be shown.

filtering options:
--show FUNCTION, -s FUNCTION

Display only parts of the bitstream which are
processed by the specified pseudo-code function as
described in the VC-2 specification. By default all
parts of the bitstream are displayed. Can be used
multiple times to show different parts of the
bitstream. Supported function names: auxiliary_data,
clean_area, color_diff_sampling_format, color_matrix,
color_primaries, color_spec,
extended_transform_parameters, fragment_data,
fragment_header, fragment_parse, frame_rate,
frame_size, hq_slice, ld_slice, padding, parse_info,
parse_parameters, parse_sequence, parse_stream,
picture_header, picture_parse, pixel_aspect_ratio,
quant_matrix, scan_format, sequence_header,
signal_range, slice, slice_parameters,
source_parameters, transfer_function, transform_data,
transform_parameters, wavelet_transform.

--hide FUNCTION, -H FUNCTION
Omit parts of the bitstream which are processed by the
specified pseudo-code function as described in the
VC-2 specification. Accepts the same values as --show.

--hide-slice, -S Alias for '--hide slice'. Suppresses the printing of
all transform coefficients, greatly reducing the
quantity of output.

54 Chapter 3. Software tools reference

Part II

Maintainer’s manual

55

CHAPTER

FOUR

CONFORMANCE SOFTWARE DEVELOPMENT GUIDE

This part of the documentation provides a guide to the VC-2 conformance software internals. This documentation
is aimed at maintainers of the VC-2 conformance software. Users of the VC-2 conformance software need not
read this, or later sections.

The maintainer’s manual aims to provide a ‘big picture’ view of the software architecture along with more detailed
introductions to each of the main concepts and components within. It does not, however, provide an exhaustive
reference including every minor component in the codebase – refer to the comments and docstrings within the
code in these instances.

This introductory chapter provides instructions on setting up a suitable installation of this software for development
purposes along with an overview of the structure of the codebase. Subsequent chapters will provide in-depth
reference documentation for each of the main parts of this software.

4.1 Development setup

The following instructions outline the process for setting up a development environment for the VC-2 conformance
software and the procedures for running tests and generating documentation.

4.1.1 Checking out repositories

The VC-2 conformance software is split across in the following Git20 repositories, each containing a Python
package of the same name:

https://github.com/bbc/vc2_conformance (vc2_conformance (page 59)) The main conformance software
repository on which this documentation focuses.

https://github.com/bbc/vc2_conformance_data (vc2_conformance_data ([vc2_conformance_data], page 1))
Data files (e.g. test pictures) used in the conformance testing process.

https://github.com/bbc/vc2_data_tables (vc2_data_tables ([vc2_data_tables], page 3)) Data tables and
constant definitions from the VC-2 standard.

https://github.com/bbc/vc2_bit_widths (vc2_bit_widths ([vc2_bit_widths], page 33)) Mathematical
routines for computing near worst case signals for VC-2 codecs.

The above repositories should be cloned into local directories, e.g. using:

$ git clone git@github.com:bbc/vc2_conformance.git
$ git clone git@github.com:bbc/vc2_conformance_data.git
$ git clone git@github.com:bbc/vc2_data_tables.git
$ git clone git@github.com:bbc/vc2_bit_widths.git

Pre-commit hooks21 are used to enforce certain code standards in these repositories. These should be installed as
follows:

20 https://git-scm.com/
21 https://pre-commit.com/

57

https://git-scm.com/
https://github.com/bbc/vc2_conformance
https://github.com/bbc/vc2_conformance_data
https://github.com/bbc/vc2_data_tables
https://github.com/bbc/vc2_bit_widths
https://pre-commit.com/

SMPTE VC-2 Conformance Software, Release v1.0.1

$ # For each cloned repository...
$ cd path/to/repo/
$ pre-commit install

4.1.2 Virtual environment

It is strongly recommended that development is carried out in a Python virtual environment22 (see warning below).
This can be setup using:

$ python -m virtualenv --python <PYTHON INTERPRETER> venv

This will create a virtual environment in the directory venv which uses the python interpreter <PYTHON
INTERPRETER>, which should generally be one of python2 or python3.

Once created, the virtual environment must be activated in any shell you use using:

$ source venv/bin/activate

Note: Python virtual environment provides an isolated environment in which packages can be installed without
impacting on the rest of the system. Once activated, the python and pip commands will use the python version
and packages setup within the virtual environment.

Warning: When working outside a virtual environment, Python packages included by some operating systems
(e.g. Ubuntu) can be very out of date leading to problems during development. This is the result of certain
development dependencies not correctly specifiying their version requirements and is outside of our control.
By using a virtual environment, up-to-date versions of all dependencies will be installed which avoids these
problems.

Note: The VC-2 conformance software itself does correctly specify its dependencies so these problems only
apply during development and should not affect end users.

4.1.3 Development installation

A development installation of the conformance software can be performed directly from each of the cloned repos-
itories as follows:

$ # Each repo should be installed as follows, in the following order:
$ # * vc2_data_tables
$ # * vc2_bit_widths
$ # * vc2_conformance_data
$ # * vc2_conformance
$ cd path/to/repo/

$ # Install in editable/development mode (so edits take effect immediately)
$ pip install -e .

$ # Install test suite dependencies
$ pip install -r requirements-test.txt

$ # Install documentation building dependencies (not present for all
$ # repositories)
$ pip install -r requirements-docs.txt

22 https://virtualenv.pypa.io/en/stable/

58 Chapter 4. Conformance software development guide

https://virtualenv.pypa.io/en/stable/

SMPTE VC-2 Conformance Software, Release v1.0.1

After installation, the various vc2-* commands will be made available in your $PATH and the various vc2_*
Python modules in your $PYTHONPATH. These will point directly to the cloned source code and so changes will
take effect immediately.

4.1.4 Running tests

Test routines relating to the code in each repository can be found in the tests/ directory of each repository. The
test suites are built on pytest23 and, once a development install has been completed, can be executed as follows:

$ py.test path/to/vc2_data_tables/tests/
$ py.test path/to/vc2_bit_widths/tests/
$ py.test path/to/vc2_conformance_data/tests/
$ py.test path/to/vc2_conformance/tests/

4.1.5 Building documentation

HTML documentation (including the documentation you’re reading now) is built as follows (after a development
install has been performed):

$ make -C path/to/vc2_data_tables/docs html
$ make -C path/to/vc2_bit_widths/docs html
$ make -C path/to/vc2_conformance_data/docs html
$ make -C path/to/vc2_conformance/docs html

HTML documentation will be written to the docs/build/html/ directory (open the index.html file in a
web browser to read it).

Alternatively, PDF documentation can be built by replacing html with latexpdf in the above commands. This
will require a working installation of LaTeX24 and Inkscape25 to build. In addition, for cross-references between
PDFs to be created correctly, the documentation must be built within the Python virtual environment where the
various vc2_* Python packages are installed in development/editable mode.

4.2 vc2_conformance internals overview

The main VC-2 conformance software is contained within the vc2_conformance (page 59) module.

Note: Before going any further you should familiarize yourself with the User’s guide (for codec testers) (page 5)
which gives an introduction of the general tasks carried out by the conformance software.

Below we give a general overview of the design of the conformance software.

23 https://docs.pytest.org/en/latest/
24 https://www.latex-project.org/
25 https://inkscape.org/

4.2. vc2_conformance internals overview 59

https://docs.pytest.org/en/latest/
https://www.latex-project.org/
https://inkscape.org/

SMPTE VC-2 Conformance Software, Release v1.0.1

4.2.1 Main components

The VC-2 conformance software consists of four main components:

• A reference VC-2 decoder, including bitstream validation logic (vc2_conformance.decoder
(page 69))

• A flexible VC-2 encoder (vc2_conformance.encoder (page 75))

• A VC-2 bitstream manipulation library (vc2_conformance.bitstream (page 81))

• A set of test case generation routines (vc2_conformance.test_cases (page 63))

The reference decoder and bitstream validator forms a key part of the conformance testing procedures (via the vc2-
bitstream-validator (page 45) command). This decoder is based directly on the pseudocode published in the VC-2
standard. Refer to the vc2_conformance.decoder (page 69) module documentation for a full introduction
to this component.

The encoder is used internally to generate decoder test cases. This encoder is flexible enough to support all of VC-
2 features but otherwise simplistic in terms of runtime performance and picture quality. Further documentation on
the encoder’s design and functionality can be found in the vc2_conformance.encoder (page 75) module.

The bitstream manipulation library in the vc2_conformance.bitstream (page 81) module is used inter-
nally for three purposes. Firstly it is used during decoder test case generation to produce bitstreams with specific
properties. Secondly it is used by the vc2-bitstream-viewer (page 51) command to produce human readable de-
scriptions of bitstream contents. Finally it is used extensively by the VC-2 conformance software’s own test suite
to generate and check bitstreams.

Finally, the test case generation routines form the basis of the vc2-test-case-generator (page 43) tool which gen-
erates test pictures and bitstreams used during conformance testing procedures. These will be introduced in
vc2_conformance.test_cases: VC-2 codec test case generation (page 63).

4.2.2 Use of VC-2 pseudocode

The VC-2 conformance software design prioritises correctness and consistency with the VC-2 specification. To
achieve this, significant parts are built using the pseudocode within the VC-2 specification.

The VC-2 specification uses pseudocode to define the nominal operation of a VC-2 decoder. The pseudocode
language used is sufficiently similar to Python that a translation from pseudocode into executable Python is trivial.
Automated translation is also possible using the VC-2 Pseudocode Parser tool26. Once translated, the pseudocode
may be used as the basis for correct-by-definition implementations of parts of a VC-2 codec.

The reference VC-2 decoder and bitstream validator (vc2_conformance.decoder (page 69)) consists of the
VC-2 pseudocode (implementing the decoder behaviour) augmented with additional checks (implementing the
validation logic).

The VC-2 encoder (vc2_conformance.encoder (page 75)), though not specified by the VC-2 standard,
nevertheless makes substantial use of the VC-2 pseudocode functions. For example routines for computing slice
dimensions are reused while other parts, such as the forward discrete wavelet transform are simple inversions of
the decoder pseudocode. The correctness of these inversions is relatively easily verified in the test suite thanks to
the invertability of VC-2’s transforms.

The bitstream manipulation library (vc2_conformance.bitstream (page 81)) provides routines for seri-
alising and deserialising binary bitstreams into easily manipulated Python data structures. With the exception of
the Python data structure definitions, this library is based entirely on the VC-2 pseudocode, using the serdes
(page 93) framework.

To ensure consistency with the VC-2 pseudocode, the conformance software’s test suite automatically compares
the software’s source code with the pseudocode to verify equivalence. See the verification (page 147)
module for details.

26 https://github.com/bbc/vc2_pseudocode_parser

60 Chapter 4. Conformance software development guide

https://github.com/bbc/vc2_pseudocode_parser

SMPTE VC-2 Conformance Software, Release v1.0.1

4.2.3 Performance

The major drawback of the pseudocode-driven approach used by this software is poor performance. The VC-
2 pseudocode is structured with comprehensibility as its main priority and therefore often has poor algorithmic
performance. Further, the use of Python – due to its similarity with the pseudocode and high level of abstraction
– introduces an additional performance overhead.

Another source of slow performance is the use of infinite precision (i.e. native Python) integers whenever possible.
This helps avoid the class of bugs relating to the use of insufficient integer bit width in most calculations. The
dynamic range of signals passing through a VC-2 codec can grow dramatically (i.e. by many orders of magnitude)
and vary significantly between superficially similar inputs. As a consequence, this class of bug is all too easy to
introduce without infinite precision arithmetic.

As a result of the above factors, the conformance software may take on the order minutes to encode or decode
each picture in a stream. While this would be unacceptable for a production encoder or decoder, the conformance
software is intended only for use with only extremely short sequences, where correctness is the most significant
factor.

The majority of test cases apply to decoders for which all necessary materials (test bitstreams and reference
decodings) may be produced in an ‘overnight’ batch process after which the tools are not needed. The remaining
(encoder) test cases generally amount to fewer than ten frames.

4.2.4 Test case generation

Since VC-2 supports a great variety of configurations, parametrised test case generators (vc2_conformance.
test_cases (page 63)) are used rather than a ‘universal’ collection of bitstreams. While this means that users
of the conformance software are required to configure and run the test case generator themselves, it also simplifies
the testing process by ensuring only relevant test cases are produced. Furthermore, it allows certain tests to be
highly tailored to a particular configuration. For example, signal range tests are targeted specifically at the specific
wavelet transform configuration, bit width and quantization matrices used.

4.2.5 External packages

Some smaller, or more specialised aspects of the conformance testing software have been split into their own
separate Python packages. These are:

vc2_conformance_data ([vc2_conformance_data], page 1) Larger data files (including pictures and pre-
computed values) which are used to generate certain test cases.

vc2_data_tables ([vc2_data_tables], page 3) General VC-2 related constants (e.g.
PARSE_INFO_PREFIX ([vc2_data_tables], page 3)), enumerated values (e.g. ParseCodes
([vc2_data_tables], page 3)) and tabular data used during coding (e.g. PRESET_FRAME_RATES
([vc2_data_tables], page 4)).

vc2_bit_widths ([vc2_bit_widths], page 33) Computes near worst-case inputs for VC-2 encoders and de-
coders which produce very large signal values. This package is used to generate test cases to verify codecs
have used large enough integers in their implementations.

4.2. vc2_conformance internals overview 61

SMPTE VC-2 Conformance Software, Release v1.0.1

62 Chapter 4. Conformance software development guide

CHAPTER

FIVE

TEST CASE GENERATION

5.1 vc2_conformance.test_cases: VC-2 codec test case gener-
ation

The vc2_conformance.test_cases (page 63) module contains routines for generating test cases for VC-2
encoder and decoder implementations.

A description of each test case generator can be found in Encoder test cases (page 33) and Decoder Test Cases
(page 23) in the user guide.

5.1.1 Test case generators

Test case generators are generator functions which take a CodecFeatures (page 65) dictionary as their only
argument and produce picture sequences (for encoders) or bitstreams (for decoders). Test case generators may
take one of the following forms:

• Function which returns a single test case

• Function which returns a single test case or None (indicating no test case was produced)

• Generator function which yields multiple test cases.

A test case can be one of:

• For encoder test cases, a picture sequence in the form of an EncoderTestSequence (page 64) object.

• For decoder test cases, a bitstream in the form of a Stream (page 86) object which can be serialised using
autofill_and_serialise_stream() (page 107).

• A TestCase (page 63) object containing one of the above as its value (page 64).

Test case generators may prefer to output TestCase (page 63) objects when multiple test cases are produced so
that each testcase can be given its own ‘subcase’ name. In addition, test cases may be accompanied by a freeform
JSON serialisable metadata object when TestCase (page 63) objects are produced.

class TestCase(value, subcase_name=None, case_name=None, metadata=None)
A test case, produced by a test case generator function.

Parameters

value [EncoderTestSequence (page 64) or Stream (page 86)] A value containing
the test case itself. An EncoderTestSequence (page 64) for encoder test cases or
Stream (page 86) for decoder test cases.

subcase_name [str or None] An identifier for the sub-case if this test case has several sub-
cases.

case_name [str or None] The name of the test case. If None, the case_name will be pop-
ulated automatically with the name of the test case generator function which returned
it.

63

SMPTE VC-2 Conformance Software, Release v1.0.1

metadata [object or None] Optional JSON-serialisable metadata associated with this test
case. The meaning and formatting of of this metadata is left to the individual test case
to define.

property name
The complete name of this test case. Constructed from the case_name (page 64) and
subcase_name (page 64) attributes.

A string of the form "case_name" or "case_name[subcase_name]".

property case_name

property subcase_name

property value

property metadata

All test case generator functions are run via normalise_test_case_generator() (page 64) which nor-
malises the function into the form of a generator which yields TestCase (page 63) objects. This also populates
the case_name (page 64) field of the generated TestCase (page 63) automatically with the test case genera-
tor’s function name.

normalise_test_case_generator(f, *args, **kwargs)
Call a test case generator, f, and, regardless of its native output, produces a generator of TestCase
(page 63) objects.

If the function returns or yields TestCase (page 63) objects, their TestCase.case_name (page 64)
attributes will be populated with the function name, if not already defined. If the function returns or gen-
erates other values, these will be wrapped in TestCase (page 63) objects automatically. If the function
returns or generates None, no test case will be emitted.

5.1.2 Encoder test case generators

Encoder test case generators are located in vc2_conformance.test_cases.encoder must be deco-
rated with the vc2_conformance.test_cases.encoder_test_case_generator (page 64) deco-
rator, take a CodecFeatures (page 65) and produce EncoderTestSequence (page 64) objects.

encoder_test_case_generator
Decorator to use to register all encoder test case generators.

class EncoderTestSequence(pictures, video_parameters, picture_coding_mode)
A sequence of pictures to be encoded by a VC-2 encoder under test.

Parameters

pictures [[{“Y”: [[s, . . .], . . .], “C1”: . . . , “C2”: . . . , “pic_num”: int}, . . .]] A list27 of
dictionaries containing raw picture data in 2D arrays for each picture component.

video_parameters [VideoParameters (page 142)] The video parameters associated
with the test sequence.

picture_coding_mode [PictureCodingModes ([vc2_data_tables], page 4)] The pic-
ture coding mode associated with the test sequence.

27 https://docs.python.org/3/library/stdtypes.html#list

64 Chapter 5. Test case generation

https://docs.python.org/3/library/stdtypes.html#list

SMPTE VC-2 Conformance Software, Release v1.0.1

5.1.3 Decoder test case generators

Decoder test case generators are located in vc2_conformance.test_cases.decoder must be deco-
rated with the vc2_conformance.test_cases.decoder_test_case_generator (page 65) deco-
rator, take a CodecFeatures (page 65) and produce vc2_conformance.bitstream.Stream (page 86)
dictionaries which can be serialised using autofill_and_serialise_stream() (page 107).

decoder_test_case_generator
Decorator to use to register all decoder test case generators.

5.1.4 Test case generator registries

All test case generators are registered (by the encoder_test_case_generator (page 64) and
decoder_test_case_generator (page 65) decorators) with one of two Registry (page 65) singletons:

ENCODER_TEST_CASE_GENERATOR_REGISTRY
Registry (page 65) singleton with which all VC-2 encoder test cases are registered.

DECODER_TEST_CASE_GENERATOR_REGISTRY
Registry (page 65) singleton with which all VC-2 decoder test cases are registered.

The Registry (page 65) class implements a registry of test case generators which the vc2-test-case-generator
(page 43) script uses to generate a complete set of test cases.

class Registry
A registry of test case generating functions.

register_test_case_generator(f)
Register a test case generator function with this registry.

Returns the (unmodified) function allowing this method to be used as a decorator.

generate_test_cases(*args, **kwargs)
Run every test case generator registered with this registry, passing each generator the supplied argu-
ments. Generates all TestCase (page 63) objects.

iter_independent_generators(*args, **kwargs)
Produce a series of generator functions which may be called in parallel. Each returned zero-argument
function should be called and will generate a series of TestCase (page 63) objects.

iter_registered_functions()
Iterates over the raw functions registered with this registry.

Only intended for use during documentation generation.

5.2 vc2_conformance.codec_features: Codec feature defini-
tions

The vc2_conformance.codec_features (page 65) module defines the CodecFeatures (page 65)
fixeddict (page 157) which is used to describe codec and video format configurations. These are
used to control the test case generators (vc2_conformance.test_cases (page 63)) and encoder
(vc2_conformance.encoder (page 75)).

fixeddict CodecFeatures
A definition of a set of coding features supported by a video codec implementation. In practice, a particular
codec’s feature set may be defined by a collection of these, defining support for several picture formats.

Keys

name [str] A unique, human-readable name to identify this collection of features (e.g.
"uhd_over_hd_sdi").

5.2. vc2_conformance.codec_features: Codec feature definitions 65

SMPTE VC-2 Conformance Software, Release v1.0.1

level [Levels ([vc2_data_tables], page 8)] The VC-2 level. The user is responsible for
choosing settings below which actually conform to this level.

profile [Profiles ([vc2_data_tables], page 7)] The VC-2 profile to use.

picture_coding_mode [PictureCodingModes ([vc2_data_tables], page 4)] The pic-
ture coding mode to use.

video_parameters [VideoParameters (page 142)] The video format to use.

wavelet_index, wavelet_index_ho [WaveletFilters ([vc2_data_tables], page 7)] The
wavelet transform to use. For symmetric transforms, both values must be equal.

dwt_depth and dwt_depth_ho [int] The transform depths to use. For symmetric trans-
forms, dwt_depth_ho must be zero.

slices_x and slices_y [int] The number of picture slices, horizontally and vertically.

fragment_slice_count [int] If fragmented pictures are in use, should be non-zero and con-
tain the maximum number of slices to include in each fragment. Otherwise, should be
zero.

lossless [bool] If True, lossless variable-bit-rate coding will be used. If false, fixed-rate
lossy coding is used.

picture_bytes [int or None] When lossless is False, this gives the number of bytes per
picture to use. Slices will be assigned (as close to) the same number of bytes each as
possible. If lossless is True, this value should be None.

quantization_matrix [None or {level: {orient: value, . . . }, . . . }] None or a hierarchy of
dictionaries as constructed by the quant_matrix pseudocode function (12.4.5.3). If
None, the default quantization matrix will be used.

The read_codec_features_csv() (page 66) may be used to read these structures from a CSV. This func-
tionality is used by the vc2-test-case-generator (page 43) script.

read_codec_features_csv(csvfile)
Read a set of CodecFeatures (page 65) from a CSV file in the format described by Defining codec
features (page 14).

Parameters

csvfile [iterable] An iterable of lines from a CSV file, e.g. an open file object.

Returns

codec_feature_sets [OrderedDict([(name, CodecFeatures (page 65)), . . .])]

Raises

InvalidCodecFeaturesError (page 66) Raised if the provided CSV contains in-
valid or incomplete data.

Note: Validation largely extends only to syntactic issues (e.g. invalid integer values,
‘picture_bytes’ being specified for lossless formats etc). It does not include validation of
‘deeper’ issues such as too-small picture_bytes values or parameters not being permitted
by the specified level.

exception InvalidCodecFeaturesError
Raised by read_codec_features_csv() (page 66) encounters a problem with the data presented in
a codec features listing CSV file.

Finally, the following function may be used when determining level-related restrictions which apply to a set of
CodecFeatures (page 65).

66 Chapter 5. Test case generation

SMPTE VC-2 Conformance Software, Release v1.0.1

codec_features_to_trivial_level_constraints(codec_features)
Returns the some of the values a given CodecFeatures (page 65) would assign in a
level_constraints (page 119) table.

Parameters

codec_features [CodecFeatures (page 65)]

Returns

constrained_values [{key: concrete_value, . . . }] A partial set of level_constraints
(page 119), specifically containing the following keys:

• level

• profile

• picture_coding_mode

• wavelet_index

• dwt_depth

• slices_x

• slices_y

• slices_have_same_dimensions

• custom_quant_matrix

In addition for the low delay profile only:

• slice_bytes_numerator

• slice_bytes_denominator

In addition for the high quality profile only:

• slice_prefix_bytes

Note: In principle, more keys could be determined, however a line in the sand is re-
quired for what is considered ‘simple’ to determine and what requires re-implementing
much of the codec. We draw the line at these values since all of them are straight-
forward to work out.

5.2. vc2_conformance.codec_features: Codec feature definitions 67

SMPTE VC-2 Conformance Software, Release v1.0.1

68 Chapter 5. Test case generation

CHAPTER

SIX

VC2_CONFORMANCE.DECODER: REFERENCE DECODER AND
BITSTREAM VALIDATOR

The vc2_conformance.decoder (page 69) module contains the components of a VC-2 decoder and bit-
stream validator. Along with the basic decoding logic, additional tests are included to check all conditions imposed
on bitstreams by the VC-2 specification.

6.1 Usage

The bitstream decoder/validator is exposed to end-users via the vc2-bitstream-validator (page 45) command line
utility.

This module may also be used directly. The following snippet illustrates how a VC-2 bitstream might be decoded
and verified using this module:

>>> from vc2_conformance.string_utils import wrap_paragraphs
>>> from vc2_conformance.pseudocode import State
>>> from vc2_conformance.decoder import init_io, parse_stream, ConformanceError

>>> # Create a callback to be called with picture data whenever a picture
>>> # is decoded from the bitstream.
>>> def output_picture_callback(picture, video_parameters, picture_coding_mode):
>>> print("A picture was decoded...")

>>> # Create an initial state object ready to read the bitstream
>>> state = State(_output_picture_callback=output_picture_callback)
>>> f = open("path/to/bitstream.vc2", "rb")
>>> init_io(state, f)

>>> # Decode and validate!
>>> try:
... parse_stream(state)
... print("Bitstream is valid!")
... except ConformanceError as e:
... print("Bitstream is NOT valid:")
... print(wrap_paragraphs(e.explain(), 80))
Bitstream is NOT valid:
An invalid parse code, 0x0A, was provided to a parse info header (10.5.1).

See (Table 10.1) for the list of allowed parse codes.

Perhaps this bitstream conforms to an earlier or later version of the VC-2
standard?

69

SMPTE VC-2 Conformance Software, Release v1.0.1

6.2 Overview

This decoder is based on the pseudocode published in the VC-2 specification and consequently follows the same
structure as the pseudocode with the parse_stream() function being used to decode a complete stream.

The pseudocode is automatically verified for consistency with the VC-2 specification by the conformance software
test suite. Verified pseudocode functions are annotated with the ref_pseudocode() (page 144) decorator.
See verification (page 147) (in the tests/ directory) for details on the automated verification process.
All bitstream validation logic, which doesn’t form part of the specified pseudocode, appears between ## Begin
not in spec and ## End not in spec comments.

All global state is passed around via the State (page 139) dictionary. This dictionary is augmented with a
number of additional entries not included in the VC-2 specification but which are necessary for a ‘real’ decoder
implementation (e.g. an input file handle) and for validation purposes (e.g. recorded offsets of previous data units).
See vc2_conformance.pseudocode.state.State (page 139) for a complete enumeration of these.

Underlying I/O operations are not specified by the VC-2 specification. This decoder reads streams from file-like
objects. See the vc2_conformance.decoder.io (page 70) module for details. As illustrated in the example
above, the init_io() (page 71) function is used to specify the file-like object the stream will be read from.

When conformance errors are detected, ConformanceError (page 72) exceptions are thrown. These ex-
ceptions provide in-depth human readable explanations of conformance issues along with suggested invocations
of the vc2-bitstream-viewer (page 51) tool for diagnosing issues. See the vc2_conformance.decoder.
exceptions (page 72) module for details. These exceptions are largely thrown directly by validation code
spliced into the pseudocode routines. Some common checks are factored out into their own ‘assertions’ in the
vc2_conformance.decoder.assertions.

The decoder logic is organised in line with the sections of the VC-2 specification:

• vc2_conformance.decoder.io (page 70): (A) Bitstream I/O

• vc2_conformance.decoder.stream: (10) Stream syntax

• vc2_conformance.decoder.sequence_header: (11) Sequence header

• vc2_conformance.decoder.picture_syntax: (12) Picture syntax

• vc2_conformance.decoder.transform_data_syntax: (13) Transform data syntax

• vc2_conformance.decoder.fragment_syntax: (14) Fragment syntax

The vc2_conformance.decoder (page 69) module only includes pseudocode functions which define ad-
ditional behaviour not defined by the spec. Specifically, this includes performing I/O or additional checks
for bitstream validation purposes. All other pseudocode routines are used ‘verbatim’ and can be found in
vc2_conformance.pseudocode (page 133).

6.3 Stream I/O

The vc2_conformance.io module implements I/O functions for reading bitstreams from file-like objects.
The exposed functions implement the interface specified in annex (A).

70 Chapter 6. vc2_conformance.decoder: Reference decoder and bitstream validator

SMPTE VC-2 Conformance Software, Release v1.0.1

6.3.1 Initialisation

The init_io() (page 71) function must be used to initialise a State (page 139) dictionary so that it is ready
to read a bitstream.

init_io(state, f)
(A.2.1) Initialise the I/O-related variables in state.

This function should be called exactly once to initialise the I/O-related parts of the state dictionary to their
initial state as specified by (A.2.1):

. . . a decoder is deemed to maintain a copy of the current byte, state[current_byte], and an index
to the next bit (in the byte) to be read, state[next_bit] . . .

As well as initialising the state[“current_byte”] and state[“next_bit”] fields, this sets the (out-of-spec)
state[“_file”] entry to the provided file-like object.

Parameters

state [State (page 139)] The state dictionary to be initialised.

f [file-like object] The file to read the bitstream from.

6.3.2 Determining stream position

The tell() (page 71) function (below) is used by verification logic to report and check offsets of values
within a bitstream. For example, it may be used to check next_parse_offset fields are correct (see
vc2_conformance.decoder.stream.parse_info()).

tell(state)
Not part of spec; used to log bit offsets in the bitstream.

Return a (byte, bit) tuple giving the offset of the next bit to be read in the stream.

6.3.3 Bitstream recording

The VC-2 specification sometimes requires that the coded bitstream representation of a particular set of re-
peated fields is consistent within a bitstream (e.g. see vc2_conformance.decoder.sequence_header.
sequence_header()). To facilitate this test, the record_bitstream_start() (page 71) and
record_bitstream_finish() (page 71) functions may be used to capture the bitstream bytes read within
part of the bitstream.

record_bitstream_start(state)
Not part of spec; used for verifying that repeated sequence_headers are byte-for-byte identical (11.1).

This function causes all future bytes read from the bitstream to be logged into state[“_read_bytes”] until
record_bitstream_finish() (page 71) is called.

Recordings must start byte aligned.

record_bitstream_finish(state)
See record_bitstream_start() (page 71).

Returns

bytearray The bytes read since record_bitstream_start() (page 71) was called.
Any unread bits of the final byte will be set to zero.

6.3. Stream I/O 71

SMPTE VC-2 Conformance Software, Release v1.0.1

6.4 Conformance exceptions

The vc2_conformance.decoder.exceptions (page 72) module defines a number of exceptions derived
from ConformanceError (page 72) representing different conformance errors a bitstream may contain. These
exceptions provide additional methods which return detailed human-readable information about the conformance
error.

exception ConformanceError
Base class for all bitstream conformance failure exceptions.

explain()
Produce a detailed human readable explanation of the conformance failure.

Should return a string which can be re-linewrapped by vc2_conformance.string_utils.
wrap_paragraphs() (page 164).

The first line will be used as a summary when the exception is printed using str().

bitstream_viewer_hint()
Return a set of sample command line arguments for the vc2-bitstream-viewer tool which will display
the relevant portion of the bitstream.

This string may include the following str.format()28 substitutions which should be filled in be-
fore display:

• {cmd} The command name of the bitstream viewer (i.e. usually vc2-bitstream-viewer)

• {file} The filename of the bitstream.

• {offset} The bit offset of the next bit in the bitstream to be read.

This returned string should not be line-wrapped but should be de-indented by textwrap.
dedent()29.

offending_offset()
If known, return the bit-offset of the offending part of the bitstream. Otherwise return None (and the
current offset will be assumed).

6.5 Sequence composition restrictions

Various restrictions may be imposed on choice and order of data unit types in a sequence. For example, all
sequences must start with a sequence header and end with an end of sequence. Some levels impose additional re-
strictions such as prohibiting the mixing of fragments and pictures or requiring sequence headers to be interleaved
between every picture.

Rather than using ad-hoc logic to enforce these restrictions, regular expressions are used to check the pattern
of data unit types. See the vc2_conformance.symbol_re (page 122) module for details on the regular
expression matching system.

28 https://docs.python.org/3/library/stdtypes.html#str.format
29 https://docs.python.org/3/library/textwrap.html#textwrap.dedent

72 Chapter 6. vc2_conformance.decoder: Reference decoder and bitstream validator

https://docs.python.org/3/library/stdtypes.html#str.format
https://docs.python.org/3/library/textwrap.html#textwrap.dedent
https://docs.python.org/3/library/textwrap.html#textwrap.dedent

SMPTE VC-2 Conformance Software, Release v1.0.1

6.6 Level constraints

VC-2’s levels impose additional constraints on bitstreams, for example restricting some fields to particular ranges
of values. Rather than including ad-hoc validation logic for each level, a ‘constraints table’ is used. Bit-
stream values which may be constrained are checked using vc2_conformance.decoder.assertions.
assert_level_constraint().

See the vc2_conformance.constraint_table (page 128) module for an introduction to constraint ta-
bles. See the vc2_conformance.level_constraints (page 119) module for level-related constraint
data, including documentation on the entries included in the levels constraints table.

6.6. Level constraints 73

SMPTE VC-2 Conformance Software, Release v1.0.1

74 Chapter 6. vc2_conformance.decoder: Reference decoder and bitstream validator

CHAPTER

SEVEN

VC2_CONFORMANCE.ENCODER: INTERNAL VC-2 ENCODER

The vc2_conformance.encoder (page 75) module implements a simple VC-2 encoder which is used to
produce test streams for conformance testing purposes (see vc2_conformance.test_cases (page 63)). It
is extremely slow and performs only simple picture compression, but is sufficiently flexible to support all VC-2
coding modes.

The encoder is principally concerned with carrying out the following tasks:

• Encoding the video and codec configuration into a sequence header (see vc2_conformance.
encoder.sequence_header (page 76)).

• Transforming, slicing and quantizing pictures (i.e. compressing them) (see vc2_conformance.
encoder.pictures (page 77)).

• Assembling sequences of data units comprising a complete VC-2 stream (see vc2_conformance.
encoder.sequence (page 79)).

This module does not generate serialised VC-2 bitstreams in binary format. Instead, it generates a bit-
stream description data structure which may subsequently be serialised by the bitstream serialiser in the
vc2_conformance.bitstream (page 81) module. This design allows the generated bitstream to be more
easily manipulated prior to serialisation if required for a particular test case.

7.1 Usage

The encoder behaviour is controlled by a CodecFeatures (page 65) dictionary. This specifies picture/video
format to be compressed (e.g. resolution etc.) along with the coding options (e.g. wavelet transform and bitrate).
See the vc2_conformance.codec_features (page 65) module for more details. There are essentially two
modes of operation, depending on the value of CodecFeatures (page 65)["lossless"]:

• Lossless mode: variable bitrate, qindex is always 0.

• Lossy mode: fixed bit rate, variable qindex.

A series of pictures may be encoded into a VC-2 sequence using the vc2_conformance.encoder.
make_sequence() function, and then serialised into a binary bitstream as illustrated below:

>>> # Define the video format to be encoded and basic coding options
>>> from vc2_conformance.codec_features import CodecFeatures
>>> codec_features = CodecFeatures(...)

>>> # Encode a series of pictures
>>> from vc2_conformance.encoder import make_sequence
>>> pictures = [
... {"Y": ..., "C1": ..., "C2": ..., "pic_num": 100},
... # ...
...]
>>> sequence = make_sequence(codec_features, pictures)

>>> # Serialise to a file

(continues on next page)

75

SMPTE VC-2 Conformance Software, Release v1.0.1

(continued from previous page)

>>> from vc2_conformance.bitstream import (
... Stream,
... autofill_and_serialise_stream,
...)
>>> with open("bitstream.vc2", "wb") as f:
... autofill_and_serialise_stream(f, Stream(sequences=[sequence]))

7.2 Bitstream conformance

This encoder will produce bitstreams conformant with the VC-2 specification whenever the coding parameters
specified represent a legal combination.

In some cases, invalid coding options will cause the encoder to fail and raise an exception in
vc2_conformance.encoder.exceptions (page 76). For example, if lossless coding and the low de-
lay profile are requested simultaneously.

In other cases, the encoder will produce a bitstream, however this bitstream will be non-conformant. For example,
if the clean area defined is larger than the frame size, the encoder will ignore this inconsistency of metadata and
produce a (non-conformant) bitstream anyway.

When conformant bitstreams are required, it is the responsibility of the user of the encoder to ensure that the
provided CodecFeatures (page 65) are valid. In practice, the easiest way to do this is to check for exceptions
when the encoder is used then use the bitstream validator (vc2_conformance.decoder (page 69)) to validate
the generated bitstream.

7.3 Exceptions

The exceptions defined in vc2_conformance.encoder.exceptions (page 76) derive from
UnsatisfiableCodecFeaturesError (page 76) and are thrown when the presented encoder con-
figuration makes encoding impossible. These exceptions provide detailed explanations of why encoding was not
possible.

exception UnsatisfiableCodecFeaturesError
Base class for exceptions thrown by the encoder when it is unable to generate a stream in the desired format
due to some invalid CodecFeatures (page 65) configuration.

explain()
Produce a detailed human readable explanation of the failure.

Should return a string which can be re-linewrapped by vc2_conformance.string_utils.
wrap_paragraphs() (page 164).

The first line will be used as a summary when the exception is printed using str().

7.4 Sequence header generation

The vc2_conformance.encoder.sequence_header (page 76) module contains routines for encoding
a set of video format and codec parameters into sequence headers.

The make_sequence_header_data_unit() (page 76) function is used to generate sequence headers by
the encoder:

make_sequence_header_data_unit(codec_features)
Create a DataUnit (page 87) object containing a sequence header which sensibly encodes the features
specified in CodecFeatures (page 65) dictionary provided.

Parameters

76 Chapter 7. vc2_conformance.encoder: Internal VC-2 encoder

SMPTE VC-2 Conformance Software, Release v1.0.1

codec_features [CodecFeatures (page 65)]

Returns

data_unit [DataUnit (page 87)]

Raises

IncompatibleLevelAndVideoFormatError

In practice there are often many potential sequence header encodings for a given set of video parameters. For
example, when a video format closely matches a predefined base video format, the various custom_*_flag
overrides may largely be omitted. This is optional, however, and an encoder is free to use these overrides explicitly
even when they’re not required.

The make_sequence_header_data_unit() (page 76) function always attempts to use the most compact
encoding it can. Some test cases, however may wish to use less compact encodings and so to support this the
iter_sequence_headers() (page 77) function is provided:

iter_sequence_headers(codec_features)
Generate a series of SequenceHeader (page 87) objects which encode the video format specified in
CodecFeatures (page 65) dictionary provided.

This generator will start with an efficient encoding of the required features, built on the most closely matched
base video format. This will be followed by successively less efficient encodings (i.e. using more custom
fields) but the same (best-matched) base video format. After this, encodings based on other base video
formats will be produced (again starting with the most efficient encoding for each format first).

This generator may output no items if the VC-2 level specified does not permit the format given.

Parameters

codec_features [CodecFeatures (page 65)]

Yields

sequence_header [SequenceHeader (page 87)]

7.5 Picture encoding & compression

The vc2_conformance.encoder.pictures (page 77) module contains simple routines for compressing
pictures in a VC-2 bitstream.

The picture encoding behaviour used by the encoder is encapsulated by the make_picture_data_units()
(page 77) function which turns a series of pictures (given as raw pixel values) into a series of DataUnits
(page 87):

make_picture_data_units(codec_features, picture, minimum_qindex=0, mini-
mum_slice_size_scaler=1)

Create a seires of one or more DataUnits (page 87) containing a compressed version of the supplied
picture.

When codec_features["fragment_slice_count"] is 0, a single picture parse data unit will be
produced. otherwise a series of two or more fragment parse data units will be produced.

A simple wrapper around make_picture_parse_data_unit() and
make_fragment_parse_data_units().

Parameters

codec_features [CodecFeatures (page 65)]

picture [{“Y”: [[s, . . .], . . .], “C1”: . . . , “C2”: . . . , “pic_num”: int}] The picture to be
encoded. This picture will be compressed using a simple VC-2 encoder implementa-
tion. It does not necessarily produce the most high-quality encodings. If pic_num is
omitted, picture_number fields will be omitted in the output.

7.5. Picture encoding & compression 77

SMPTE VC-2 Conformance Software, Release v1.0.1

minimum_qindex [int] Specifies the minimum quantization index to be used. Must be 0
for lossless codecs.

minimum_slice_size_scaler [int] Specifies the minimum slice_size_scaler to be used for
high quality pictures. Ignored in low delay mode.

Returns

data_units [[vc2_conformance.bitstream.DataUnit (page 87), . . .]]

7.5.1 Encoding algorithm

Depending on the lossy/lossless coding mode chosen, one of two simple algorithms is used.

Lossless mode

In lossless mode, every slice’s qindex will be set to 0 (no quantization) and all transform coefficients will be
coded verbatim (though trailing zeros will be coded implicitly).

Slices will be sized as large as necessary, though as small as possible.

The smallest slice_size_scaler possible will be used for each coded picture independently.

Note: In principle, lossless modes may occasionally make use of quantization to achieve better compression. For
example where all transform coefficients are a multiple of the same quantisation factor. This encoder, however,
does not do this.

Lossy mode

In lossy mode the qindex for each slice is chosen on a slice-by-slice basis. The encoder tests quantization indices
starting at zero and stopping when the transform coefficients fit into the slice.

Slices are sized such that the picture slice data in the bitstream totals CodecFeatures
(page 65)["picture_bytes"].

For the high quality profile, the smallest slice_size_scaler which can encode a slice where a single com-
ponent consumes a whole slice is used for every picture.

Warning: The total size of picture slice data may differ from CodecFeatures
(page 65)["picture_bytes"] by up to slice_size_scaler bytes (for high quality profile
formats) or one byte (for low delay profile formats). This will occur when the number of bytes (or multiple of
slice_size_scaler bytes) is not exactly divisible by the required number of picture bytes.

Warning: The total number of bytes used to encode each picture, once other coding overheads (such as
headers) will be higher than CodecFeatures (page 65)["picture_bytes"].

Note: This codec may not always produce highest quality pictures possible in lossy modes. For example, some-
times chosing higher quantisation indices can produce fewer coding artefacts, particularly in concatenated coding
applications. Similarly, higher picture quality may sometimes be obtained by setting later transform coefficients
to zero enabling a lower quantization index to be used. Other more sophisticated schemes may also directly tweak
transform coefficients.

78 Chapter 7. vc2_conformance.encoder: Internal VC-2 encoder

SMPTE VC-2 Conformance Software, Release v1.0.1

7.5.2 Use of pseudocode

This module uses the pseudocode-derived vc2_conformance.pseudocode.picture_encoding
(page 136) module for its forward-DWT and vc2_conformance.pseudocode.quantization
(page 137) for quantization. Other pseudocode routines are also used where possible, for example for computing
slice dimensions.

7.6 Sequence generation

The vc2_conformance.encoder.sequence (page 79) module provides routines for constructing com-
plete VC-2 sequences.

Principally, this module implements the make_sequence() (page 79) function which produces
vc2_conformance.bitstream.Sequence (page 86) objects containing pictures compressed according
to the required codec specifications. This is the main entry point to the encoder.

make_sequence(codec_features, pictures, *data_unit_patterns, **kwargs)
Generate a complete VC-2 bitstream based on the provided set of codec features and containing compressed
versions of the specified set of pictures.

This function also takes a small number of additional parameters which override certain encoder behaviours
as may be required by some test case generators.

Parameters

codec_features [CodecFeatures (page 65)]

pictures [[{“Y”: [[s, . . .], . . .], “C1”: . . . , “C2”: . . . , “pic_num”: int}, . . .]] The pictures
to be encoded in the bitstream. If pic_num is omitted, picture_number fields will
also be omitted in the output (and left for, e.g. vc2_conformance.bitstream.
autofill_and_serialise_stream() to assign). See vc2_conformance.
encoder.pictures (page 77) for details of the picture compression process.

*data_unit_patterns [str] Force the generated sequence of data units to match a specified
regular expression. For example, "(. padding_data)+ end_of_sequence"
will force a padding data unit to be inserted between each data unit. See the
vc2_conformance.symbol_re (page 122) module for details of the regular ex-
pression format.

A sequence of data units matching all specified patterns while meeting the requirements
of the VC-2 standard will be generated. If this is not possible, vc2_conformance.
encoder.exceptions.IncompatibleLevelAndDataUnitError will be
raised.

minimum_qindex [int or [int, . . .]] Keyword-only argument. Default 0. Specifies the min-
imum quantization index to be used for all picture slices. If a list is provided, specifies
the minimum quantization index separately for each picture.

This option may be used by test cases where a particular (very high) quantization index
must be used. Note that the encoder may still use larger quantization indices if a set of
transform coefficients still do not fit into a slice so the caller must check that this has
not occurred.

Must be 0 for lossless coding modes.

minimum_slice_size_scaler [int] Keyword-only argument. Default 1. Specifies the mini-
mum slice size scaler to use.

For almost all sensible coding modes, the slice_size_scaler can be set to ‘1’ –
and this encoder will do so if possible. To facilitate the production of test cases verifying
higher values are supported, this option may be used to pick a larger value. The encoder
may still use larger slice_size_scaler values if this is necessary, however.

7.6. Sequence generation 79

SMPTE VC-2 Conformance Software, Release v1.0.1

Only has an effect on high quality profile coding modes, will be ignored for the low
delay profile modes.

Returns

sequence [vc2_conformance.bitstream.Sequence (page 86)] The VC-
2 bitstream sequence. This may be serialised by encapsulating it in a
vc2_conformance.bitstream.Stream (page 86) and serialising it with
autofill_and_serialise_stream() (page 107).

Raises

UnsatisfiableCodecFeaturesError Raised if a sequence could not be generated according
to the requirements given.

7.7 Level constraints

For the most part, all of the parameters which could be restricted by a VC-2 level are chosen in the supplied
CodecFeatures (page 65). As such, choosing parameters which comply with the declared level is the respon-
sibility of the caller (see comments above). However, some coding choices restricted by levels are left up to this
encoder, such as how video parameters are coded in a sequence header. In these cases, the encoder makes choices
which comply with the supplied level, a process which may require a constraint solving procedure.

In principle level constaints, as expressed by constraints tables (see vc2_conformance.
constraint_table (page 128) and vc2_conformance.level_constraints (page 119)), could
require a full global constraint solver to resolve. Fortunately, all existing VC-2 levels are specified such that,
once the level (and a few other parameters) have been defined, almost all constrained parameters are independent
meaning that global constraint solving is not required. The only case where constraint dependencies exist are
the parameters relating to sequence headers. As a consequence the sequence_header (page 76) generation
module uses a simple constraint solver internally.

Note: The constraint parameter independence property of the VC-2 levels mentioned above is
essential for the encoder to generate level-conforming bitstreams. A test in tests/encoder/
test_level_constraints_assumptions.py is provided which will fail should a future VC-2 level
not have this property. See the detailed documentation at the top of this file for a more thorough introduction and
discussion of this topic.

80 Chapter 7. vc2_conformance.encoder: Internal VC-2 encoder

CHAPTER

EIGHT

VC2_CONFORMANCE.BITSTREAM: BITSTREAM MANIPULATION
MODULE

The vc2_conformance.bitstream (page 81) module implements facilities for deserialising, displaying,
manipulating and serialising VC-2 bitstreams, including non-conformant streams, at a low-level.

This documentation begins with an overview of how bitstreams can be serialised, deserialised and represented as
Python data structures using this module. This is followed by an in-depth description of how the serialiser and
deserialisers work internally.

8.1 How the serialiser/deserialiser module is used

This module is used by various parts of the VC-2 conformance software, for example:

• The vc2-bitstream-viewer (page 51) utility uses this module to produce human readable, hierarchical de-
scriptions of bitstreams.

• The test case generators in vc2_conformance.test_cases (page 63) use this module to manipulate
bitstreams, for example by tweaking values or filling padding bits with specific data.

• The VC-2 encoder in vc2_conformance.encoder (page 75) produces deserialised bitstreams directly
for later serialisation by this module.

• The conformance software’s own test suite makes extensive use of this module.

Note: This module is not used by the bitstream validator (vc2_conformance.decoder (page 69)) which
instead operates directly on the binary bitstream instead.

This module consists of two main parts: the serdes (page 93) framework for building serialisers and deserialisers
and a serialiser/deserialiser for VC-2.

The serdes (page 93) framework allows serialisers and deserialisers to be constructed directly from the VC-2
pseudocode, ensuring a high chance of correctness.

The VC-2 serialiser/deserialiser, implemented using the serdes (page 93) framework defines a series of Python
data structures which may be used to describe a VC-2 bitstream.

81

SMPTE VC-2 Conformance Software, Release v1.0.1

8.2 Quick-start guide

Before diving into the details, we’ll briefly give few quick examples which illustrate how this module is used
below. We’ll show how a small bitstream can be explicitly described as a Python data structure, serialised and
then deserialised again. We’ll skim over the details (and ignore a number of important but minor features) in the
process.

8.2.1 Deserialised bitstream data structures

A VC-2 bitstream can be described hierarchically as a series of dictionaries and lists. For example, the following
structure describes a minimal VC-2 bitstream containing just a single end-of-sequence data unit:

>>> from bitarray import bitarray

>>> # A minimal bitstream...
>>> bitstream_description = {
... # ...consisting of a single sequence...
... "sequences": [
... {
... # ...with a single data unit...
... "data_units": [
... {
... # ...which is an end-of-sequence data unit
... "parse_info": {
... "padding": bitarray(), # No byte alignment bits
... "parse_info_prefix": 0x42424344,
... "parse_code": 0x10, # End of sequence
... "next_parse_offset": 0,
... "previous_parse_offset": 0,
... },
... },
...],
... },
...],
... }

To make this somewhat clearer and more robust, a set of fixeddicts (page 157) are provided which may be
used instead of bare Python dictionaries. The vc2_data_tables ([vc2_data_tables], page 3) package also
includes many helpful constant definitions. Together, these make it easier to see what’s going on while also
eliminating simple mistakes like misspelling a field name.

Note: fixeddicts (page 157) are subclasses of Python’s native dict30 type with the following extra features:

• They allow only a permitted set of key names to be used.

• The __str__ implementation produces an easier to read pretty-printed format.

Using these types, our example now looks like:

>>> from vc2_data_tables import PARSE_INFO_PREFIX, ParseCodes
>>> from vc2_conformance.bitstream import Stream, Sequence, DataUnit, ParseInfo

>>> bitstream_description = Stream(
... sequences=[
... Sequence(
... data_units=[
... DataUnit(

(continues on next page)

30 https://docs.python.org/3/library/stdtypes.html#dict

82 Chapter 8. vc2_conformance.bitstream: Bitstream manipulation module

https://docs.python.org/3/library/stdtypes.html#dict

SMPTE VC-2 Conformance Software, Release v1.0.1

(continued from previous page)

... parse_info=ParseInfo(

... padding=bitarray(), # No byte alignment bits

... parse_info_prefix=PARSE_INFO_PREFIX,

... parse_code=ParseCodes.end_of_sequence,

... next_parse_offset=0,

... previous_parse_offset=0,

...),

...),

...],

...),

...],

...)

See Deserialised VC-2 bitstream data types (page 86) for details of the expected hierarchy of a deserialised bit-
stream (and the fixeddict (page 157) dictionary types provided).

8.2.2 Serialising bitstreams

To serialise our bitstream into binary form, we can use the following (which we’ll unpick afterwards):

>>> from vc2_conformance.bitstream import BitstreamWriter, Serialiser, parse_stream
>>> from vc2_conformance.pseudocode import State

>>> with open("/path/to/bitstream.vc2", "wb") as f:
... with Serialiser(BitstreamWriter(f), bitstream_description) as ser:
... parse_stream(ser, State())

In the example above, parse_stream is (a special version of) the parse_stream VC-2 pseudocode func-
tion provided by the vc2_conformance.bitstream (page 81) module. This pseudocode function would
normally decode a VC-2 stream (as per the VC-2 specification), however this modified version may be used
to serialise (or deserialise) a bitstream. The modified function takes an extra first argument, a Serialiser
(page 102) in this case, which it will use to produce the serialised bitstream.

The Serialiser (page 102) class takes two arguments in this example: a BitstreamWriter (page 104)
and the data structure to serialise (bitstream_description in our example).

The BitstreamWriter (page 104) is a wrapper for file-like objects which provides additional bitwise I/O
operations used during serialisation.

The second argument to Serialiser (page 102) is the deserialised data structure to be serialised. This may be
an ordinary Python dicts31 or a fixeddict (page 157).

Note: It is possible to serialise (or deserialise) components of a bitstream in isolation by using other pseudocode
functions in place of parse_stream. In this case, the data structure provided to the Serialiser (page 102)
must match the shape expected by the modified pseudocode function used. See Deserialised VC-2 bitstream data
types (page 86) for an enumeration of the pseudocode functions available and the expected data structure.

31 https://docs.python.org/3/library/stdtypes.html#dict

8.2. Quick-start guide 83

https://docs.python.org/3/library/stdtypes.html#dict

SMPTE VC-2 Conformance Software, Release v1.0.1

8.2.3 Autofilling bitstream values

In the example above we explicitly spelt out every field in the bitstream – including the empty padding field! If we
had omitted this field, the serialiser will produce an error because it wouldn’t know what padding bits we wanted
it to use in the stream. However, often we don’t care about details such as these and so the Serialiser can
optionally ‘autofill’ certain values which weren’t given in the deserialised data structure.

The Serialiser class takes an optional third argument which it uses to autofill missing values. A sensible set
of a autofill values is provided in vc2_conformance.bitstream.vc2_default_values allowing us
to rewrite our example like so:

>>> from vc2_conformance.bitstream import vc2_default_values

>>> concise_bitstream_description = Stream(
... sequences=[
... Sequence(
... data_units=[
... DataUnit(
... parse_info=ParseInfo(
... parse_code=ParseCodes.end_of_sequence,
... next_parse_offset=0,
... previous_parse_offset=0,
...),
...),
...],
...),
...],
...)

>>> with open("/path/to/bitstream.vc2", "wb") as f:
... with Serialiser(
... BitstreamWriter(f),
... concise_bitstream_description,
... vc2_default_values,
...) as ser:
... parse_stream(ser, State())

This time we were able to omit the byte-alignment padding value and parse info prefix which the serialiser aut-
ofilled with zeros and 0x42424344 respectively.

The default values for all fields are given in Deserialised VC-2 bitstream data types (page 86).

Unfortunately, when using the mechanism above, autofill values are not provided for every field in a bitstream
(or for fields listed as autofilled with <AUTO> in the documentation). For instance, picture numbers and parse
offset values must still be calculated and specified explicitly. For a more complete bitstream autofill solution the
vc2_conformance.bitstream.autofill_and_serialise_stream() utility function is provided.

The autofill_and_serialise_stream() function can autofill most values including picture numbers,
and parse offset fields (which marked as <AUTO> in the documentation). It also provides a more concise wrapper
around the serialisation process.

Using autofill_and_serialise_stream() our example now becomes:

>>> from vc2_conformance.bitstream import autofill_and_serialise_stream

>>> very_concise_bitstream_description = Stream(
... sequences=[
... Sequence(
... data_units=[
... DataUnit(
... parse_info=ParseInfo(
... parse_code=ParseCodes.end_of_sequence,
...),

(continues on next page)

84 Chapter 8. vc2_conformance.bitstream: Bitstream manipulation module

SMPTE VC-2 Conformance Software, Release v1.0.1

(continued from previous page)

...),

...],

...),

...],

...)

>>> with open("/path/to/bitstream.vc2", "wb") as f:
... autofill_and_serialise_stream(f, very_concise_bitstream_description)

Notice that this time we could omit all but the parse_code field.

Note: The autofill_and_serialise_stream() function only supports serialisation of entire Streams
(page 86) and cannot be used to serialise smaller pieces of a bitstream in isolation.

8.2.4 Deserialising bitstreams

To deserialise a bitstream again, the process is similar:

>>> from vc2_conformance.bitstream import BitstreamReader, Deserialiser

>>> with open("/tmp/bitstream.vc2", "rb") as f:
... with Deserialiser(BitstreamReader(f)) as des:
... parse_stream(des, State())
>>> deserialised_bitstream = des.context

This time, we pass a Deserialiser (page 102) (which takes a BitstreamReader (page 103) as argument)
into parse_stream. The deserialised bitstream is placed into des.context as a hierarchy of fixeddicts.
We can then print or interact with the deserialised data structure just like any other Python object:

>>> # NB: Fixeddicts produce pretty-printed output when printed!
>>> print(deserialised_bitstream)
Stream:

sequences:
0: Sequence:

data_units:
0: DataUnit:
parse_info: ParseInfo:

padding: 0b
parse_info_prefix: Correct (0x42424344)
parse_code: end_of_sequence (0x10)
next_parse_offset: 0
previous_parse_offset: 0

>>> data_unit = deserialised_bitstream["sequences"][0]["data_units"][0]
>>> print(data_unit["parse_info"]["parse_code"])
16

8.2. Quick-start guide 85

SMPTE VC-2 Conformance Software, Release v1.0.1

8.3 Deserialised VC-2 bitstream data types

Deserialised VC-2 bitstreams are described by a hierarchy of fixeddicts (page 157), exported in
vc2_conformance.bitstream (page 81). Each fixeddict (page 157) represents the data read
by a particular VC-2 pseudocode function. Special implementations of these functions are provided in
vc2_conformance.bitstream (page 81) which may be used to serialise and deserialise VC-2 bitstreams
(or individual parts thereof).

Type Pseudocode function
Stream (page 86) parse_stream
Sequence (page 86) parse_sequence
DataUnit (page 87)
ParseInfo (page 87) parse_info
SequenceHeader (page 87) sequence_header
ParseParameters (page 87) parse_parameters
SourceParameters (page 88) source_parameters
FrameSize (page 88) frame_size
ColorDiffSamplingFormat (page 88) color_diff_sampling_format
ScanFormat (page 88) scan_format
FrameRate (page 88) frame_rate
PixelAspectRatio (page 88) pixel_aspect_ratio
CleanArea (page 89) clean_area
SignalRange (page 89) signal_range
ColorSpec (page 89) color_spec
ColorPrimaries (page 89) color_primaries
ColorMatrix (page 89) color_matrix
TransferFunction (page 90) transfer_function

PictureParse (page 90) picture_parse
PictureHeader (page 90) picture_header
WaveletTransform (page 90) wavelet_transform
TransformParameters (page 90) transform_parameters
ExtendedTransformParameters (page 90) extended_transform_parameters
SliceParameters (page 91) slice_parameters
QuantMatrix (page 91) quant_matrix

TransformData (page 91) transform_data
LDSlice (page 91) ld_slice
HQSlice (page 91) hq_slice

FragmentParse (page 92) fragment_parse
FragmentHeader (page 92) fragment_header
TransformParameters (page 90) transform_parameters
ExtendedTransformParameters (page 90) extended_transform_parameters
SliceParameters (page 91) slice_parameters
QuantMatrix (page 91) quant_matrix

FragmentData (page 92) fragment_data
LDSlice (page 91) ld_slice
HQSlice (page 91) hq_slice

AuxiliaryData (page 92) auxiliary_data
Padding (page 93) padding

fixeddict Stream
(10.3) A VC-2 stream.

Keys

sequences [[Sequence (page 86), . . .]]

fixeddict Sequence

86 Chapter 8. vc2_conformance.bitstream: Bitstream manipulation module

SMPTE VC-2 Conformance Software, Release v1.0.1

(10.4.1) A VC-2 sequence.

Keys

data_units [[DataUnit (page 87), . . .]]

_state [State (page 139)] Computed value. The State (page 139) object being popu-
lated by the parser.

fixeddict DataUnit
A data unit (e.g. sequence header or picture) and its associated parse info. Based on the values read by
parse_sequence() (10.4.1) in each iteration.

Keys

parse_info [ParseInfo (page 87)]

sequence_header [SequenceHeader (page 87)]

picture_parse [PictureParse (page 90)]

fragment_parse [FragmentParse (page 92)]

auxiliary_data [AuxiliaryData (page 92)]

padding [Padding (page 93)]

fixeddict ParseInfo
(10.5.1) Parse info header defined by parse_info().

Keys

padding [bitarray (autofilled with bitarray())] Byte alignment padding bits.

parse_info_prefix [int (autofilled with 1111638852)]

parse_code [ParseCodes ([vc2_data_tables], page 3) (autofilled with <ParseC-
odes.end_of_sequence: 16>)]

next_parse_offset [int (autofilled with <AUTO>)]

previous_parse_offset [int (autofilled with <AUTO>)]

_offset [int] Computed value. The byte offset of the start of this parse_info block in the
bitstream.

fixeddict SequenceHeader
(11.1) Sequence header defined by sequence_header().

Keys

parse_parameters [ParseParameters (page 87)]

base_video_format [BaseVideoFormats ([vc2_data_tables], page 6) (autofilled with
<BaseVideoFormats.custom_format: 0>)]

video_parameters [SourceParameters (page 88)]

picture_coding_mode [PictureCodingModes ([vc2_data_tables], page 4) (autofilled
with <PictureCodingModes.pictures_are_frames: 0>)]

fixeddict ParseParameters
(11.2.1) Sequence header defined by parse_parameters().

Keys

major_version [int (autofilled with <AUTO>)]

minor_version [int (autofilled with 0)]

profile [Profiles ([vc2_data_tables], page 7) (autofilled with <Profiles.high_quality:
3>)]

level [Levels ([vc2_data_tables], page 8) (autofilled with <Levels.unconstrained: 0>)]

8.3. Deserialised VC-2 bitstream data types 87

SMPTE VC-2 Conformance Software, Release v1.0.1

fixeddict SourceParameters
(11.4.1) Video format overrides defined by source_parameters().

Keys

frame_size [FrameSize (page 88)]

color_diff_sampling_format [ColorDiffSamplingFormat (page 88)]

scan_format [ScanFormat (page 88)]

frame_rate [FrameRate (page 88)]

pixel_aspect_ratio [PixelAspectRatio (page 88)]

clean_area [CleanArea (page 89)]

signal_range [SignalRange (page 89)]

color_spec [ColorSpec (page 89)]

fixeddict FrameSize
(11.4.3) Frame size override defined by frame_size().

Keys

custom_dimensions_flag [bool (autofilled with False)]

frame_width [int (autofilled with 1)]

frame_height [int (autofilled with 1)]

fixeddict ColorDiffSamplingFormat
(11.4.4) Color-difference sampling override defined by color_diff_sampling_format().

Keys

custom_color_diff_format_flag [bool (autofilled with False)]

color_diff_format_index [ColorDifferenceSamplingFormats
([vc2_data_tables], page 4) (autofilled with <ColorDifferenceSamplingFor-
mats.color_4_4_4: 0>)]

fixeddict ScanFormat
(11.4.5) Scan format override defined by scan_format().

Keys

custom_scan_format_flag [bool (autofilled with False)]

source_sampling [SourceSamplingModes ([vc2_data_tables], page 4) (autofilled
with <SourceSamplingModes.progressive: 0>)]

fixeddict FrameRate
(11.4.6) Frame-rate override defined by frame_rate().

Keys

custom_frame_rate_flag [bool (autofilled with False)]

index [PresetFrameRates ([vc2_data_tables], page 4) (autofilled with <PresetFram-
eRates.fps_25: 3>)]

frame_rate_numer [int (autofilled with 25)]

frame_rate_denom [int (autofilled with 1)]

fixeddict PixelAspectRatio
(11.4.7) Pixel aspect ratio override defined by pixel_aspect_ratio() (errata: also listed as
aspect_ratio() in some parts of the spec).

Keys

custom_pixel_aspect_ratio_flag [bool (autofilled with False)]

88 Chapter 8. vc2_conformance.bitstream: Bitstream manipulation module

SMPTE VC-2 Conformance Software, Release v1.0.1

index [PresetPixelAspectRatios ([vc2_data_tables], page 4) (autofilled with
<PresetPixelAspectRatios.ratio_1_1: 1>)]

pixel_aspect_ratio_numer [int (autofilled with 1)]

pixel_aspect_ratio_denom [int (autofilled with 1)]

fixeddict CleanArea
(11.4.8) Clean areas override defined by clean_area().

Keys

custom_clean_area_flag [bool (autofilled with False)]

clean_width [int (autofilled with 1)]

clean_height [int (autofilled with 1)]

left_offset [int (autofilled with 0)]

top_offset [int (autofilled with 0)]

fixeddict SignalRange
(11.4.9) Signal range override defined by signal_range().

Keys

custom_signal_range_flag [bool (autofilled with False)]

index [PresetSignalRanges ([vc2_data_tables], page 4) (autofilled with <PresetSig-
nalRanges.video_8bit_full_range: 1>)]

luma_offset [int (autofilled with 0)]

luma_excursion [int (autofilled with 1)]

color_diff_offset [int (autofilled with 0)]

color_diff_excursion [int (autofilled with 1)]

fixeddict ColorSpec
(11.4.10.1) Color specification override defined by color_spec().

Keys

custom_color_spec_flag [bool (autofilled with False)]

index [PresetColorSpecs ([vc2_data_tables], page 6) (autofilled with <PresetColor-
Specs.hdtv: 3>)]

color_primaries [ColorPrimaries (page 89)]

color_matrix [ColorMatrix (page 89)]

transfer_function [TransferFunction (page 90)]

fixeddict ColorPrimaries
(11.4.10.2) Color primaries override defined by color_primaries().

Keys

custom_color_primaries_flag [bool (autofilled with False)]

index [PresetColorPrimaries ([vc2_data_tables], page 5) (autofilled with <Preset-
ColorPrimaries.hdtv: 0>)]

fixeddict ColorMatrix
(11.4.10.3) Color matrix override defined by color_matrix().

Keys

custom_color_matrix_flag [bool (autofilled with False)]

8.3. Deserialised VC-2 bitstream data types 89

SMPTE VC-2 Conformance Software, Release v1.0.1

index [PresetColorMatrices ([vc2_data_tables], page 5) (autofilled with <Preset-
ColorMatrices.hdtv: 0>)]

fixeddict TransferFunction
(11.4.10.4) Transfer function override defined by transfer_function().

Keys

custom_transfer_function_flag [bool (autofilled with False)]

index [PresetTransferFunctions ([vc2_data_tables], page 5) (autofilled with
<PresetTransferFunctions.tv_gamma: 0>)]

fixeddict PictureParse
(12.1) A picture data unit defined by picture_parse()

Keys

padding1 [bitarray (autofilled with bitarray())] Picture header byte alignment padding
bits.

picture_header [PictureHeader (page 90)]

padding2 [bitarray (autofilled with bitarray())] Wavelet transform byte alignment
padding bits.

wavelet_transform [WaveletTransform (page 90)]

fixeddict PictureHeader
(12.2) Picture header information defined by picture_header().

Keys

picture_number [int (autofilled with <AUTO>)]

fixeddict WaveletTransform
(12.3) Wavelet parameters and coefficients defined by wavelet_transform().

Keys

transform_parameters [TransformParameters (page 90)]

padding [bitarray (autofilled with bitarray())] Byte alignment padding bits.

transform_data [TransformData (page 91)]

fixeddict TransformParameters
(12.4.1) Wavelet transform parameters defined by transform_parameters().

Keys

wavelet_index [WaveletFilters ([vc2_data_tables], page 7) (autofilled with
<WaveletFilters.haar_with_shift: 4>)]

dwt_depth [int (autofilled with 0)]

extended_transform_parameters [ExtendedTransformParameters (page 90)]

slice_parameters [SliceParameters (page 91)]

quant_matrix [QuantMatrix (page 91)]

fixeddict ExtendedTransformParameters
(12.4.4.1) Extended (horizontal-only) wavelet transform parameters defined by
extended_transform_parameters().

Keys

asym_transform_index_flag [bool (autofilled with False)]

wavelet_index_ho [WaveletFilters ([vc2_data_tables], page 7) (autofilled with
<WaveletFilters.haar_with_shift: 4>)]

90 Chapter 8. vc2_conformance.bitstream: Bitstream manipulation module

SMPTE VC-2 Conformance Software, Release v1.0.1

asym_transform_flag [bool (autofilled with False)]

dwt_depth_ho [int (autofilled with 0)]

fixeddict SliceParameters
(12.4.5.2) Slice dimension parameters defined by slice_parameters().

Keys

slices_x [int (autofilled with 1)]

slices_y [int (autofilled with 1)]

slice_bytes_numerator [int (autofilled with 1)]

slice_bytes_denominator [int (autofilled with 1)]

slice_prefix_bytes [int (autofilled with 0)]

slice_size_scaler [int (autofilled with 1)]

fixeddict QuantMatrix
(12.4.5.3) Custom quantisation matrix override defined by quant_matrix().

Keys

custom_quant_matrix [bool (autofilled with False)]

quant_matrix [[int, . . .] (autofilled with 0)] Quantization matrix values in bitstream order.

fixeddict TransformData
(13.5.2) Transform coefficient data slices read by transform_data().

Keys

ld_slices [[LDSlice (page 91), . . .]]

hq_slices [[HQSlice (page 91), . . .]]

_state [State (page 139)] Computed value. A copy of the State (page 139) dictionary
held when processing this transform data. May be used to work out how the deserialised
values correspond to transform components within the slices above.

fixeddict LDSlice
(13.5.3.1) The data associated with a single low-delay slice, defined by ld_slice().

Keys

qindex [int (autofilled with 0)]

slice_y_length [int (autofilled with 0)]

y_transform [[int, . . .] (autofilled with 0)] Slice luma transform coefficients in bitstream
order.

c_transform [[int, . . .] (autofilled with 0)] Slice interleaved colordifference transform co-
efficients in bitstream order.

y_block_padding [bitarray (autofilled with bitarray())] Unused bits from y_transform
bounded block.

c_block_padding [bitarray (autofilled with bitarray())] Unused bits from c_transform
bounded block.

_sx [int] Computed value. Slice coordinates.

_sy [int] Computed value. Slice coordinates.

fixeddict HQSlice
(13.5.4) The data associated with a single high-quality slice, defined by hq_slice().

Keys

prefix_bytes [bytes (autofilled with b”)]

8.3. Deserialised VC-2 bitstream data types 91

SMPTE VC-2 Conformance Software, Release v1.0.1

qindex [int (autofilled with 0)]

slice_y_length [int (autofilled with 0)]

slice_c1_length [int (autofilled with 0)]

slice_c2_length [int (autofilled with 0)]

y_transform [[int, . . .] (autofilled with 0)] Slice luma transform coefficients in bitstream
order.

c1_transform [[int, . . .] (autofilled with 0)] Slice color difference 1 transform coefficients
in bitstream order.

c2_transform [[int, . . .] (autofilled with 0)] Slice color difference 2 transform coefficients
in bitstream order.

y_block_padding [bitarray (autofilled with bitarray())] Unused bits in y_transform
bounded block

c1_block_padding [bitarray (autofilled with bitarray())] Unused bits in c1_transform
bounded block

c2_block_padding [bitarray (autofilled with bitarray())] Unused bits in c2_transform
bounded block

_sx [int] Computed value. Slice coordinates.

_sy [int] Computed value. Slice coordinates.

fixeddict FragmentParse
(14.1) A fragment data unit defined by fragment_parse() containing part of a picture.

Keys

fragment_header [FragmentHeader (page 92)]

transform_parameters [TransformParameters (page 90)]

fragment_data [FragmentData (page 92)]

fixeddict FragmentHeader
(14.2) Fragment header defined by fragment_header().

Keys

picture_number [int (autofilled with <AUTO>)]

fragment_data_length [int (autofilled with 0)]

fragment_slice_count [int (autofilled with 0)]

fragment_x_offset [int (autofilled with 0)]

fragment_y_offset [int (autofilled with 0)]

fixeddict FragmentData
(14.4) Transform coefficient data slices read by fragment_data().

Keys

ld_slices [[LDSlice (page 91), . . .]]

hq_slices [[HQSlice (page 91), . . .]]

_state [State (page 139)] Computed value. A copy of the State (page 139) dictionary
held when processing this fragment data. May be used to work out how the deserialised
values correspond to transform components within the slices above.

fixeddict AuxiliaryData
(10.4.4) Auxiliary data block (as per auxiliary_data()).

Keys

92 Chapter 8. vc2_conformance.bitstream: Bitstream manipulation module

SMPTE VC-2 Conformance Software, Release v1.0.1

bytes [bytes (autofilled with b”)]

fixeddict Padding
(10.4.5) Padding data block (as per padding()).

Keys

bytes [bytes (autofilled with b”)]

8.4 serdes: A serialiser/deserialiser framework

The vc2_conformance.bitstream.serdes (page 93) module provides a framework for transforming a
set of functions designed to process a bitstream (e.g. the VC-2 specification’s pseudocode) into general-purpose
bitstream serialisers, deserialisers and analysers.

The following sections introduce the design and operation of this module in detail.

8.4.1 A basic bitstream serialiser

The VC-2 specification describes the bitstream and decoding process in a series of pseudocode functions such as
the following:

frame_size(video_parameters):
custom_dimensions_flag = read_bool()
if(custom_dimensions_flag == True)

video_parameters[frame_width] = read_uint()
video_parameters[frame_height] = read_uint()

To see how this definition might be transformed into a general purpose bitstream serialiser we must transform this
definition of a program which reads a VC-2 bitstream into one which writes one.

We start by replacing all of the read_* functions with equivalent write_* functions (which we define here as
returning the value that they write):

frame_size(video_parameters):
custom_dimensions_flag = write_bool(???)
if(custom_dimensions_flag == True)

video_parameters[frame_width] = write_uint(???)
video_parameters[frame_height] = write_uint(???)

Next we need to define what values we’d like writing by replacing the ??? placeholders with a suitable global
variables like so:

new_custom_dimensions_flag = True
new_frame_width = 1920
new_frame_height = 1080

frame_size(video_parameters):
custom_dimensions_flag = write_bool(new_custom_dimensions_flag)
if(custom_dimensions_flag == True)

video_parameters[frame_width] = write_uint(new_frame_width)
video_parameters[frame_height] = write_uint(new_frame_height)

We have now transformed the VC-2 pseudocode bitstream reader function into a writer function. What’s more,
by just changing the values of global variables we created it is possible to use this function as a general-purpose
bitstream serialiser.

8.4. serdes: A serialiser/deserialiser framework 93

SMPTE VC-2 Conformance Software, Release v1.0.1

8.4.2 A basic deserialiser

Unfortunately, the original bitstream reader pseudocode from the VC-2 specification is not quite usable as a
general-purpose bitstream deserialiser:

• The reader does not capture every value read from the bitstream in a variable we can later examine (e.g. the
custom_dimensions_flag is kept in a local variable and not returned).

• The values which are captured are stored in a structure designed to aid decoding and not necessarily to
faithfully describe a bitstream.

Lets create a new version of the reader function which overcomes these limitations. We redefine the read_*
functions to take an additional argument naming a global variable where the read values will be stored, in addition
to being returned, giving the following pseudocode:

read_custom_dimensions_flag = None
read_frame_width = None
read_frame_height = None

frame_size(video_parameters):
custom_dimensions_flag = read_bool(read_custom_dimensions_flag)
if(custom_dimensions_flag == True)

video_parameters[frame_width] = read_uint(read_frame_width)
video_parameters[frame_height] = read_uint(read_frame_height)

This small change ensures that every value read from the bitstream is captured in a global variable which we can
later examine and which is orthogonal to whatever data structures the VC-2 pseudocode might otherwise use.

An introduction to the SerDes interface

The similarities between the transformations required to turn the VC-2 pseudocode into general purpose serialisers
and deserialisers should be fairly clear. In fact, the only difference between the two is that in one the functions are
called read_* and in the other they’re called write_*. In both cases, the read_* and write_* functions
take essentially the same arguments: a name of a global variable.

This module defines the SerDes (page 98) interface which can be used by the VC-2 pseudocode specifications
to drive both bitstream serialisation and deserialisation. To use it, we replace the read_* or write_* calls with
serdes.* calls.

Translating the frame_size function into valid Python and taking a SerDes (page 98) instance as an argument
we arrive at the following code:

def frame_size(serdes, video_parameters):
custom_dimensions_flag = serdes.bool("custom_dimensions_flag")
if(custom_dimensions_flag == True)

video_parameters["frame_width"] = serdes.uint("frame_width")
video_parameters["frame_height"] = serdes.uint("frame_height")

To deserialise (read) a bitstream we use the Deserialiser (page 102) implementation of SerDes (page 98)
like so:

>>> from vc2_conformance.bitstream import BitstreamReader, Deserialiser
>>> reader = BitstreamReader(open("frame_size_snippet.bin", "rb"))

>>> with Deserialiser(reader) as des:
... frame_size(des, {})
>>> des.context
{"custom_dimensions_flag": True, "frame_width": 1920, "frame_height": 1080}

The SerDes.context (page 101) property is a dict32 which contains each of the values read from the bit-
stream (named as per the calls to the various SerDes (page 98) methods).

32 https://docs.python.org/3/library/stdtypes.html#dict

94 Chapter 8. vc2_conformance.bitstream: Bitstream manipulation module

https://docs.python.org/3/library/stdtypes.html#dict

SMPTE VC-2 Conformance Software, Release v1.0.1

In the nomenclature of this module, this context dictionary holds values for each of the target names specified by
SerDes.bool() (page 98), SerDes.uint() (page 99) etc.

Values to be serialised should be structured into a context dictionary of similar shape and passed to a
Serialiser (page 102):

>>> from vc2_conformance.bitstream import BitstreamWriter, Serialiser
>>> writer = BitstreamWriter(open("frame_size_snippet.bin", "wb"))

>>> context = {"custom_dimensions_flag": True, "frame_width": 1920, "frame_height
→˓": 1080}
>>> with Serialiser(writer, context) as ser:
... frame_size(ser, {})

In this example a bitstream containing a ‘1’ followed by the variable-length integers ‘1920’ and ‘1080’ would be
written to the bitstream.

8.4.3 Verification

The SerDes (page 98) implementations perform various ‘sanity checks’ during serialisation and deserialisation
to ensure that the values passed in or returned have a 1:1 correspondence with values in the bitstream.

• When values are read during deserialisation, Deserialiser (page 102) checks that names are not re-
used, guaranteeing that if a value appears in the bitstream it also appears in the output context dictionary
(and are not later overwritten).

• When values are written during serialisation, Serialiser (page 102) checks that every value in the
context dictionary is used exactly once, ensuring that every value provided is represented in the bitstream.

• During serialisation, values are also checked to ensure they can be correctly represented by the bitstream
encoding. For example, providing a negative value to uint() (page 99) will fail.

8.4.4 Representing hierarchy

The VC-2 bitstream does not represent a flat collection of values but rather a hierarchy. The SerDes (page 98)
interface provides additional facilities to allow this structure to be recreated in the deserialised representation,
making it easier to inspect and describes bitstreams in their deserialised form.

For example, in the VC-2 specification, the source_parameters function (11.4) is defined by a series of
functions which each read the values relating to a particular video feature such as the frame_size function
we’ve seen above. To collect together related values we can use SerDes.subcontext() (page 101) to create
nested context dictionaries:

def source_parameters(serdes):
video_parameters = {}
with serdes.subcontext("frame_size"):

frame_size(serdes, video_parameters)
with serdes.subcontext("color_diff_sampling_format"):

color_diff_sampling_format(serdes, video_parameters)
...
return video_parameters

This results in a nested dictionary structure:

>>> with Deserialiser(reader) as des:
... video_parameters = source_parameters(des)

>>> from pprint import pprint
>>> pprint(des.context)
{

(continues on next page)

8.4. serdes: A serialiser/deserialiser framework 95

SMPTE VC-2 Conformance Software, Release v1.0.1

(continued from previous page)

"frame_size": {
"custom_dimensions_flag": True,
"frame_width": 1920,
"frame_height": 1080,

},
"color_diff_sampling_format": {

"custom_color_diff_format_flag": False,
},
...

}

When used with vc2_conformance.fixeddict (page 157), SerDes (page 98) also makes it possible to
define custom dictionary types for each part of the hierarchy using the context_type() (page 103) decorator.
Benefits include:

• Improved ‘pretty-printed’ string representations.

• Additional checks that unexpected values are not used accidentally in the bitstream.

For example, here’s how the parse_info header (10.5.1) might be represented:

from vc2_conformance.fixeddict import fixeddict, Entry
from vc2_conformance.formatters import Hex
from vc2_data_tables import ParseCodes, PARSE_INFO_PREFIX
ParseInfo = fixeddict(

"ParseInfo",
Entry("parse_info_prefix", formatter=Hex(8)),
Entry("parse_code", enum=ParseCodes),
Entry("next_parse_offset"),
Entry("previous_parse_offset"),

)

@context_type(ParseInfo)
def parse_info(serdes, state):

serdes.nbits(4*8, "parse_info_prefix")
state["parse_code"] = serdes.nbits(8, "parse_code")
state["next_parse_offset"] = serdes.nbits(32, "next_parse_offset")
state["previous_parse_offset"] = serdes.nbits(32, "previous_parse_offset")

Using the above we can quickly create structures ready for serialisation:

>>> context = ParseInfo(
... parse_info_prefix=PARSE_INFO_PREFIX,
... parse_code=ParseCodes.end_of_sequence,
... next_parse_offset=0,
... previous_parse_offset=1234,
...)
>>> with Deserialiser(writer, context) as des:
... parse_info(des, {})

We also benefit from improved string formatting when deserialising values:

>>> with Deserialiser(reader) as des:
... parse_info(des, {})
>>> str(des.context)
ParseInfo:

parse_info_prefix: 0x42424344
parse_code: end_of_sequence (0x10)
next_parse_offset: 0
previous_parse_offset: 1234

96 Chapter 8. vc2_conformance.bitstream: Bitstream manipulation module

SMPTE VC-2 Conformance Software, Release v1.0.1

8.4.5 Representing arrays

The VC-2 bitstream format includes a number of array-like fields, for example arrays of transform coefficients
within slices. Rather than defining unique names for every array value, SerDes (page 98) allows values to be
declared as lists. For example:

def list_example(serdes):
serdes.declare_list("three_values")
serdes.uint("three_values")
serdes.uint("three_values")
serdes.uint("three_values")

When deserialising, the result will look like:

>>> with Deserialiser(reader) as des:
... list_example(des)
>>> des.context
{"three_values": [100, 200, 300]}

Likewise, when serialising, a list of values (of the correct length) should also be provided:

>>> context = {"three_values": [10, 20, 30]}
>>> with Deserialiser(writer, context) as des:
... list_example(des)

As usual, the SerDes (page 98) classes will verify that the correct number of values is present and will throw
exceptions when too many or too few are provided.

8.4.6 Computed values

In some circumstances, when interpreting a deserialised bitstream it may be necessary to know information com-
puted by an earlier part of the bitstream. For example, the dimensions of a slice depend on numerous video
formatting options. To avoid error-prone reimplementation of these calculations it is possible to use SerDes.
computed_value() (page 101) to add values to the context dictionary which do not appear in the bitstream.
For example:

def ld_slice(serdes, state, sx, sy):
serdes.computed_value("_slices_x", state["slices_x"])
serdes.computed_value("_slices_y", state["slices_y"])
...

The computed value will be set in the context dictionary regardless of whether serialisation or deserialisation is
taking place and any existing value is always ignored.

Note: It is recommended that by convention computed value target names are prefixed or suffixed with an
underscore.

8.4. serdes: A serialiser/deserialiser framework 97

SMPTE VC-2 Conformance Software, Release v1.0.1

8.4.7 Default values during serialisation

As discussed above, the default behaviour of the Serialiser (page 102) is to require that every value in
the bitstream is provided in the context dictionary to make it explicit what is being serialised. In certain cases,
however, it may be desirable for certain values to be filled in automatically. For example:

• For pre-filling constants like the parse_info prefix.

• For use in unit tests where only certain bitstream fields’ values are of importance (and assigning defaults for
the remainder makes the code clearer).

• For providing default (e.g. zero) values for padding fields

To facilitate this, the Serialiser (page 102) class may be passed a default value lookup like so:

>>> default_values = {
... ParseInfo: {
... "parse_info_prefix": PARSE_INFO_PREFIX,
... "parse_code": ParseCodes.end_of_sequence,
... "next_parse_offset": 0,
... "previous_parse_offset": 0,
... },
... }

>>> writer = BitstreamWriter(open("frame_size_snippet.bin", "wb"))
>>> context = ParseInfo(
... parse_code=ParseCodes.end_of_sequence,
... previous_parse_offset=123,
...)
>>> with Serialiser(writer, context, default_values=default_values) as ser:
... parse_info(ser, {})

The default_values lookup should provide a separate set of default values for each context dictionary type.
See vc2_conformance.bitstream.vc2_fixeddicts.fixeddict_default_values for a com-
plete example.

For arrays/lists of values, the default value provided will be usd to populate array elements and not to provide a
default for the list as a whole.

Where a default value is not found in the lookup, a :py;exc:KeyError will be thrown as usual. This behaviour
allows a partial set of default values to be provided (e.g. providing defaults only for padding values) while still
validating that the provided input is correct.

API

class SerDes(io, context=None)
The base serialiser/deserialiser interface and implementation.

This base implementation includes all but the value writing/reading features of the serialisation and deseri-
alisation process.

Attributes

io [BitstreamReader (page 103) or BitstreamWriter (page 104)] The I/O inter-
face in use.

context (page 101) [dict or None] Get the top-level context dictionary.

cur_context [dict or None] The context dictionary currently being populated.

bool(target)
Reads or writes a boolean (single bit) in a bitstream (as per (A.3.2) read_bool()).

Parameters

target [str] The target for the bit (as a bool (page 98)).

98 Chapter 8. vc2_conformance.bitstream: Bitstream manipulation module

SMPTE VC-2 Conformance Software, Release v1.0.1

Returns

value [bool]

nbits(target, num_bits)
Reads or writes a fixed-length unsigned integer in a bitstream (as per (A.3.3) read_nbits()).

Parameters

target [str] The target for the value (as an int33).

num_bits [int] The number of bits in the value.

Returns

value [int]

uint_lit(target, num_bytes)
Reads or writes a fixed-length unsigned integer in a bitstream (as per (A.3.4) read_uint_lit()). Not to
be confused with uint() (page 99).

Parameters

target [str] The target for the value (as an int34).

num_bytes [int] The number of bytes in the value.

Returns

value [int]

bitarray(target, num_bits)
Reads or writes a fixed-length string of bits from the bitstream as a bitarray.bitarray. This
may be a more sensible type for holding unpredictably sized non-integer binary values such as padding
bits.

Parameters

target [str] The target for the value (as a bitarray.bitarray).

num_bits [int] The number of bits in the value.

Returns

value [bitarray.bitarray]

bytes(target, num_bytes)
Reads or writes a fixed-length bytes (page 99) string from the bitstream. This is a more convenient
alternative to nbits() (page 99) or bitarray() (page 99) when large blocks of data are to be
read but not treated as integers.

Parameters

target [str] The target for the value (as a bytes (page 99)).

num_bits [int] The number of bytes (not bits) in the value.

Returns

value [bytes (page 99)]

uint(target)
A variable-length, unsigned exp-golomb integer in a bitstream (as per (A.4.3) read_uint()).

Parameters

target [str] The target for the value (as an int35).

Returns

value [int]

sint(target, num_bits)
A variable-length, signed exp-golomb integer in a bitstream (as per (A.4.4) read_sint()).

8.4. serdes: A serialiser/deserialiser framework 99

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

SMPTE VC-2 Conformance Software, Release v1.0.1

Parameters

target [str] The target for the value (as an int36).

Returns

value [int]

byte_align(target)
Advance in the bitstream to the next whole byte boundary, if not already on one (as per (A.2.4)
byte_align()).

Parameters

target [str] The target for the padding bits (as a bitarray.bitarray).

bounded_block_begin(length)
Defines the start of a bounded block (as per (A.4.2)). Must be followed by a matching
bounded_block_end() (page 100).

See also: bounded_block() (page 100).

Bits beyond the end of the block are always ‘1’. If a ‘0’ is written past the end of the block a
ValueError37 will be thrown.

Parameters

length [int] The length of the bounded block in bits

bounded_block_end(target)
Defines the end of a bounded block (as per (A.4.2)). Must be proceeded by a matching
bounded_block_begin() (page 100).

Parameters

target [str] The target name for any unused bits (as a bitarray.bitarray).

bounded_block(target, length)
A context manager defining a bounded block (as per (A.4.2)).

See also: bounded_block_begin() (page 100).

Example usage:

with serdes.bounded_block("unused_bits", 100):
...

Parameters

target [str] The target name for any unused bits (as a bitarray.bitarray).

length [int] The length of the bounded block in bits

declare_list(target)
Declares that the specified target should be treated as a list38. Whenever this target is used in the
future, values will be read/written sequentially from the list.

This method has no impact on the bitstream.

Parameters

target [str] The target name to be declared as a list.

set_context_type(context_type)
Set (or change) the type of the current context dictionary.

This method has no impact on the bitstream.

Parameters

100 Chapter 8. vc2_conformance.bitstream: Bitstream manipulation module

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#list

SMPTE VC-2 Conformance Software, Release v1.0.1

context_type [dict39-like type] The desired type. If the context is already of the re-
quired type, no change will be made. If the context is currently of a different type, it
will be passed to the context_type constructor and the new type used in its place.

subcontext_enter(target)
Creates and/or enters a context dictionary within the specified target of the current context dictionary.
Must be followed later by a matching subcontext_leave() (page 101).

Parameters

target [str] The name of the target in the current context in which the new subcontext
is/will be stored.

subcontext_leave()
Leaves the current nested context dictionary entered by subcontext_enter() (page 101). Veri-
fies that the closed dictionary has no unused entries, throwing an appropriate exception if not.

subcontext(target)
A Python context manager alternative to ;py:meth:subcontext_enter and ;py:meth:subcontext_leave.

Example usage:

>>> with serdes.subcontext("target"):
... # ...

Exactly equivalent to:

>>> serdes.subcontext_enter("target"):
>>> # ...
>>> serdes.subcontext_leave():

(But without the possibility of forgetting the subcontext_leave() (page 101) call).

Parameters

target [str] The name of the target in the current context in which the new subcontext
is/will be stored.

computed_value(target, value)
Places a value into the named target in the current context, without reading or writing anything into
the bitstream. Any existing value in the context will be overwritten.

This operation should be used sparingly to embed additional information in a context dictionary which
might be required to sensibly interpret its contents and which cannot be trivially computed from the
context dictionary. For example, the number of transform coefficients in a coded picture depends on
numerous computations and table lookups using earlier bitstream values.

Parameters

target [str] The name of the target in the current context to store the value in.

value [any] The value to be stored.

is_target_complete(target)
Test whether a target in the current context is complete, i.e. has been fully used up. Returns True if so,
False otherwise.

verify_complete()
Verify that all values in the current context have been used and that no bounded blocks or nested
contexts have been left over.

Raises

UnusedTargetError

UnclosedNestedContextError

UnclosedBoundedBlockError

8.4. serdes: A serialiser/deserialiser framework 101

https://docs.python.org/3/library/stdtypes.html#dict

SMPTE VC-2 Conformance Software, Release v1.0.1

property context
Get the top-level context dictionary.

path(target=None)
Produce a ‘path’ describing the part of the bitstream the parser is currently processing.

If ‘target’ is None, only includes the path of the current nested context dictionary. If ‘target’ is a target
name in the current target dictionary, the path to the last-used target will be included.

A path might look like:

['source_parameters', 'frame_size', 'frame_width']

describe_path(target=None)
Produce a human-readable description of the part of the bitstream the parser is currently processing.

If ‘target’ is None, prints only the path of the current nested context dictionary. If ‘target’ is a target
name in the current target dictionary, this will be included in the string.

As a sample, a path might look like the following:

SequenceHeader['source_parameters']['frame_size']['frame_width']

class Serialiser(io, context=None, default_values={})
Bases: vc2_conformance.bitstream.serdes.SerDes (page 98)

A bitstream serialiser which, given a populated context dictionary, writes the corresponding bitstream.

Parameters

io [BitstreamWriter (page 104)]

context [dict]

class Deserialiser(io, context=None)
Bases: vc2_conformance.bitstream.serdes.SerDes (page 98)

A bitstream deserialiser which creates a context dictionary based on a bitstream.

Parameters

io [BitstreamReader (page 103)]

class MonitoredSerialiser(monitor, *args, **kwargs)
Bases: vc2_conformance.bitstream.serdes.MonitoredMixin, vc2_conformance.
bitstream.serdes.Serialiser (page 102)

Like Serialiser (page 102) but takes a ‘monitor’ function as the first constructor argument. This func-
tion will be called every time bitstream value has been serialised (written).

Parameters

monitor [callable(ser, target, value)] A function which will be called after every primi-
tive I/O operation completes. This function is passed this MonitoredSerialiser
(page 102) instance and the target name and value of the target just serialised.

This function may be used to inform a user of the current progress of serialisation (e.g.
using SerDes.describe_path() (page 102) or SerDes.io) or to terminate se-
rialisation early (by throwing an exception).

*args, **kwargs [see Serialiser (page 102)]

33 https://docs.python.org/3/library/functions.html#int
34 https://docs.python.org/3/library/functions.html#int
35 https://docs.python.org/3/library/functions.html#int
36 https://docs.python.org/3/library/functions.html#int
37 https://docs.python.org/3/library/exceptions.html#ValueError
38 https://docs.python.org/3/library/stdtypes.html#list
39 https://docs.python.org/3/library/stdtypes.html#dict

102 Chapter 8. vc2_conformance.bitstream: Bitstream manipulation module

SMPTE VC-2 Conformance Software, Release v1.0.1

class MonitoredDeserialiser(monitor, *args, **kwargs)
Bases: vc2_conformance.bitstream.serdes.MonitoredMixin, vc2_conformance.
bitstream.serdes.Deserialiser (page 102)

Like Deserialiser (page 102) but takes a ‘monitor’ function as the first constructor argument. This
function will be called every time bitstream value has been deserialised (read).

Parameters

monitor [callable(des, target, value)] A function which will be called after every primitive
I/O operation completes. This function is passed this MonitoredDeserialiser
(page 102) instance and the target name and value of the target just serialised.

This function may be used to inform a user of the current progress of deserialisation (e.g.
using SerDes.context() (page 101), SerDes.describe_path() (page 102)
or SerDes.io) or to terminate deserialisation early (by throwing an exception).

*args, **kwargs [see Serialiser (page 102)]

context_type(dict_type)
Syntactic sugar. A decorator for SerDes (page 98) which uses SerDes.set_context_type()
(page 100) to set the type of the current context dict:

Example usage:

@context_type(FrameSize)
def frame_size(serdes):

...

Exactly equivalent to:

def frame_size(serdes):
serdes.set_context_type(FrameSize)
...

The wrapped function must take a SerDes (page 98) as its first argument.

For introspection purposes, the wrapper function will be given a ‘context_type’ attribute holding the passed
‘dict_type’.

8.5 Low-level bitstream IO

The vc2_conformance.bitstream.io (page 103) module contains low-level wrappers for file-like objects
which facilitate bitwise read and write operations of the kinds used by VC-2’s bitstream format.

The BitstreamReader (page 103) and BitstreamWriter (page 104) classes provide equivalent methods
for the various read_* pseudocode functions defined in the VC-2 specification, along with a few additional
utility methods.

Note: These methods are designed to be ‘safe’ meaning that if out-of-range values are provided an error will be
produced (rather than an unexpected value being written/read).

class BitstreamReader(file)
An open file which may be read one bit at a time.

When the end-of-file is encountered, reads will result in a EOFError40.

is_end_of_stream()
Check if we’ve reached the EOF. (A.2.5)

tell()
Report the current bit-position within the stream.

8.5. Low-level bitstream IO 103

https://docs.python.org/3/library/exceptions.html#EOFError

SMPTE VC-2 Conformance Software, Release v1.0.1

Returns

(bytes, bits) bytes is the offset of the current byte from the start of the stream. bits
is the offset in the current byte (starting at 7 (MSB) and advancing towards 0 (LSB)
as bits are read).

seek(bytes, bits=7)
Seek to a specific (absolute) position in the file.

Parameters

bytes [int] The byte-offset from the start of the file.

bits [int] The bit offset into the specified byte to start reading from.

property bits_remaining
The number of bits left in the current bounded block.

None, if not in a bounded block. Otherwise, the number of unused bits remaining in the block. If
negative, indicates the number of bits read past the end of the block.

bounded_block_begin(length)
Begin a bounded block of the specified length in bits.

bounded_block_end()
Ends the current bounded block. Returns the number of unused bits remaining, but does not read them
or seek past them.

read_bit()
Read and return the next bit in the stream. (A.2.3) Reads ‘1’ for values past the end of file.

read_nbits(bits)
Read an ‘bits’-bit unsigned integer (like read_nbits (A.3.3)).

read_uint_lit(num_bytes)
Read a ‘num-bytes’ long integer (like read_uint_lit (A.3.4)).

read_bitarray(bits)
Read ‘bits’ bits returning the value as a bitarray.bitarray.

read_bytes(num_bytes)
Read a number of bytes returning a bytes41 string.

read_uint()
Read an unsigned exp-golomb code (like read_uint (A.4.3)) and return an integer.

read_sint()
Signed version of read_uint() (page 104) (like read_sint (A.4.4)).

try_read_bitarray(bits)
Attempt to read the next ‘bits’ bits from the bitstream file, leaving any bounded blocks we might be in
if necessary). May read fewer bits if the end-of-file is encountered (but will not throw a EOFError42

like other methods of this class).

Intended for the display of error messages (i.e. as the final use of a BitstreamReader (page 103)
instance) only since this method may (or may not) exit the current bounded block as a side effect.

class BitstreamWriter(file)
An open file which may be written one bit at a time.

is_end_of_stream()
Always True. (A.2.5)

40 https://docs.python.org/3/library/exceptions.html#EOFError
41 https://docs.python.org/3/library/stdtypes.html#bytes
42 https://docs.python.org/3/library/exceptions.html#EOFError

104 Chapter 8. vc2_conformance.bitstream: Bitstream manipulation module

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#EOFError

SMPTE VC-2 Conformance Software, Release v1.0.1

Note: Strictly speaking this should return False when seeking to an earlier part of the stream however
this behaviour is not implemented here for simplicity’s sake.

tell()
Report the current bit-position within the stream.

Returns

(bytes, bits) bytes is the offset of the current byte from the start of the stream. bits
is the offset in the current byte (starting at 7 (MSB) and advancing towards 0 (LSB)
as bits are written).

seek(bytes, bits=7)
Seek to a specific (absolute) position in the file. Seeking to a given byte will overwrite any bits already
set in that byte to 0.

Parameters

bytes [int] The byte-offset from the start of the file.

bits [int] The bit offset into the specified byte to start writing to.

flush()
Ensure all bytes are committed to the file.

property bits_remaining
The number of bits left in the current bounded block.

None, if not in a bounded block. Otherwise, the number of unused bits remaining in the block. If
negative, indicates the number of bits read past the end of the block.

bounded_block_begin(length)
Begin a bounded block of the specified length in bits.

bounded_block_end()
Ends the current bounded block. Returns the number of unused bits remaining, but does not write
them or seek past them.

write_bit(value)
Write a bit into the bitstream. If in a bounded block, raises a ValueError43 if a ‘0’ is written beyond
the end of the block.

write_nbits(bits, value)
Write an ‘bits’-bit integer. The complement of read_nbits (A.3.3).

Throws an OutOfRangeError if the value is too large to fit in the requested number of bits.

write_uint_lit(num_bytes, value)
Write a ‘num-bytes’ long integer. The complement of read_uint_lit (A.3.4).

Throws an OutOfRangeError if the value is too large to fit in the requested number of bytes.

write_bitarray(bits, value)
Write the ‘bits’ from the :py;class:bitarray.bitarray ‘value’.

Throws an OutOfRangeError if the value is longer than ‘bits’. The value will be right-hand zero-
padded to the required length.

write_bytes(num_bytes, value)
Write the provided bytes44 or bytearray45 in a python bytestring.

If the provided byte string is too long an OutOfRangeError will be raised. If it is too short, it will
be right-hand zero-padded.

write_uint(value)
Write an unsigned exp-golomb code.

An OutOfRangeError will be raised if a negative value is provided.

8.5. Low-level bitstream IO 105

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray

SMPTE VC-2 Conformance Software, Release v1.0.1

write_sint(value)
Signed version of write_uint() (page 105).

The following utility functions are also provided for converting between offsets given as (bytes, bits) pairs
and offsets given in bytes.

to_bit_offset(bytes, bits=7)
Convert from a (bytes, bits) tuple (as used by BitstreamReader.tell() (page 103) and
BitstreamWriter.tell() (page 105)) into a total number of bits.

from_bit_offset(total_bits)
Convert from a bit offset into a (bytes, bits) tuple (as used by BitstreamReader.tell() (page 103)
and BitstreamWriter.tell() (page 105)).

8.6 Fixeddicts and pseudocode

The vc2_conformance.bitstream.vc2_fixeddicts (page 106) module contains fixeddict
(page 157) definitions for holding VC-2 bitstream values in a hierarchy which strongly mimics the bitstream
structure. These names are re-exported in the vc2_conformance.bitstream (page 81) module for conve-
nience. See Deserialised VC-2 bitstream data types (page 86) for a listing.

It also provides the following metadata structures:

vc2_fixeddict_nesting
A lookup {fixeddict_type: [fixeddict_type, ...], ...}.

This lookup enumerates the fixeddicts which may be directly contained by the fixed dictionary types in this
module.

This hierarchical information is used by user-facing tools to allow (e.g.) recursive selection of a particular
dictionary to display.

vc2_default_values
A lookup {fixeddict_type: {key: default_value, ...}, ...}

For each fixeddict type below, provides a sensible default value for each key. The defaults are generally
chosen to produce a minimal, but valid, bitstream.

Where a particular fixeddict entry is a list, the value listed in this lookup should be treated as the default
value to use for list entries.

Warning: For default values containing a bitarray.bitarray or any other mutable type, users
must take care to copy the default value before mutating it.

The vc2_conformance.bitstream.vc2 (page 106) module contains a set of SerDes (page 98)-using
(see serdes (page 93)) functions which follow the pseudo-code in the VC-2 specification as closely as possible.
All pseudocode functions are re-exported by the vc2_conformance.bitstream (page 81) module.

See the table in Deserialised VC-2 bitstream data types (page 86) which relates these functions to their matching
fixeddicts (page 157).

In this module, all functions are derived from the pseudocode by:

• Replacing read_* calls with SerDes (page 98) calls.

• Adding SerDes (page 98) annotations.

• Removing of decoding functionality (retaining only the code required for bitstream deserialisation).

Consistency with the VC-2 pseudocode is checked by the test suite (see verification (page 147)).

43 https://docs.python.org/3/library/exceptions.html#ValueError
44 https://docs.python.org/3/library/stdtypes.html#bytes
45 https://docs.python.org/3/library/stdtypes.html#bytearray

106 Chapter 8. vc2_conformance.bitstream: Bitstream manipulation module

SMPTE VC-2 Conformance Software, Release v1.0.1

8.7 Autofill

The vc2_conformance.bitstream.vc2_autofill (page 107) module provides auto-fill routines
for automatically computing certain values for the context dictionaries used by the vc2_conformance.
bitstream.vc2 (page 106) serdes (page 93) functions. These values include the picture number and parse
offset fields which can’t default to a simple fixed value.

In the common case, the autofill_and_serialise_stream() (page 107) function may be used to seri-
alise a complete Stream (page 86), with sensible defaults provided for all fields (including picture numbers and
next/previous parse offsets).

autofill_and_serialise_stream(file, stream)
Given a Stream dictionary describing a VC-2 stream, serialise that into the supplied file.

Parameters

file [file-like object] A file open for binary writing. The serialised bitstream will be written
to this file.

stream [Stream] The stream to be serialised. Unspecified values will be auto-filled if
possible. See Deserialised VC-2 bitstream data types (page 86) for the default auto-fill
values.

Note: Internally, auto-fill values are taken from
vc2_default_values_with_auto (page 108).

Supported fields containing the special value AUTO (page 108) will be autofilled with
suitably computed values. Specifically:

• Picture numbers will set to incrementing values (starting at 0, or continuing from
the value used by the previous picture) by autofill_picture_number()
(page 107).

• The major_version field will be populated by
autofill_major_version() (page 107) and, if appropriate, extended
transform parameters fields will be removed.

• Next and previous parse offsets will be calculated automat-
ically by autofill_parse_offsets() (page 107) and
autofill_parse_offsets_finalize() (page 108).

8.7.1 Autofill value routines

The following functions implement autofill routines for specific bitstream values.

autofill_picture_number(stream, initial_picture_number=0)
Given a Stream, find all picture_number fields which are absent or contain the AUTO (page 108) sentinel
and automatically fill them with consecutive picture numbers. Numbering is restarted for each sequence.

autofill_major_version(stream)
Given a Stream, find all major_version fields which are set to the AUTO (page 108) sentinel and
automatically set them to the appropriate version number for the features used by this stream.

As a side effect, this function will automatically remove the ExtendedTransformParameters field
whenever it appears in TransformParameters if the major_version evaluates to less than 3. This
change will only be made when major_version was set to AUTO in a proceeding sequence header, if
the field was explicitly set to a particular value, no changes will be made to any transform parameters dicts
which follow.

autofill_parse_offsets(stream)
Given a Stream (page 86), find and fill in all next_parse_offset and previous_parse_offset fields which are
absent or contain the AUTO (page 108) sentinel.

8.7. Autofill 107

SMPTE VC-2 Conformance Software, Release v1.0.1

In many (but not all) cases computing these field values is most straight-forwardly done post serialisation.
In these cases, fields in the stream will be autofilled with ‘0’. These fields should then subsequently be
ammended by autofill_parse_offsets_finalize() (page 108).

autofill_parse_offsets_finalize(bitstream_writer, stream, next_parse_offsets_to_autofill,
previous_parse_offsets_to_autofill)

Finalize the autofillling of next and previous parse offsets by directly modifying the serialised bitstream.

Parameters

bitstream_writer [BitstreamWriter (page 104)] A BitstreamWriter (page 104)
set up to write to the already-serialised bitstream.

stream [Stream (page 86)] The context dictionary used to serialies the bitstream. Since
computed values added to these dictionaries by the serialisation process, it may be
necessary to use the dictionary provided by vc2_conformance.bitstream.
Serialiser.context, rather than the one passed into the Serialiser. This is be-
cause the Serialiser may have replaced some dictionaries during serialisation.

next_parse_offsets_to_autofill, previous_parse_offsets_to_autofill The arrays of parse
info indices whose next and previous parse offsets remain to be auto-filled.

8.7.2 Autofill value dictionary

vc2_default_values_with_auto
Like vc2_conformance.bitstreams.vc2_default_values but with AUTO (page 108) set as
the default value for all fields which support it.

AUTO
A constant which may be placed in a vc2_fixeddicts (page 106) fixed dictionary field to indicate that
the various autofill_* functions in this module should automatically compute a value for that field.

8.8 Metadata

The vc2_conformance.bitstream.metadata (page 108) module contains metadata about the relation-
ship between VC-2 pseudocode functions and deserialised fixeddict (page 157) structures. These are used by
the vc2-bitstream-viewer (page 51) command to produce richer output and during documentation generation.

pseudocode_function_to_fixeddicts
For the subset of pseudocode functions in the VC-2 spec dedicated to serialisation/deserialisation, gives the
corresponding fixeddict type in vc2_conformance.bitstream.vc2_fixeddicts (page 106).

A dictionary of the shape {function_name: [type, ...], ...}.

pseudocode_function_to_fixeddicts_recursive
Like pseudocode_function_to_fixeddicts (page 108) but each entry also recursively includes
the fixeddict types of all contained entries.

fixeddict_to_pseudocode_function
Provides a mapping from vc2_conformance.bitstream.vc2_fixeddicts (page 106) types to
the name of the corresponding pseudocode function which may be used to serialise/deserialise from/to it.

108 Chapter 8. vc2_conformance.bitstream: Bitstream manipulation module

CHAPTER

NINE

TEST PICTURE GENERATION REFERENCE

9.1 vc2_conformance.picture_generators: Picture genera-
tors

The vc2_conformance.picture_generators (page 109) module contains routines for generating video
sequences for arbitrary VC-2 video formats.

The picture generators in this module are used to generate encoder and decoder test cases (vc2_conformance.
test_cases (page 63)).

All picture generator functions take a VideoParameters (page 142), and PictureCodingModes
([vc2_data_tables], page 4) as their arguments, defining the desired VC-2 video format. They then yield a
sequence of {"Y": [[int, ...], ...], "C1": [[int, ...], ...], "C2": [[int, .
..], ...], "pic_num": int} dictionaries containing integer picture component values, ready for en-
coding or writing to a file.

The following picture generators are provided.

moving_sprite(video_parameters, picture_coding_mode, num_frames=10)
A video sequence containing a simple moving synthetic image.

This sequence consists of a 128 by 128 pixel sprite (shown below) on a black background which traverses
the screen from left-to-right moving 16 pixels to the right every frame (or 8 every field). By default the
sequence is 10 frames long.

This test sequence may be used to verify that interlacing, pixel aspect ratio and frame-rate metadata is being
correctly reported by a codec for display purposes.

For interlaced formats (see scan_format (11.4.5)), sequential fields will contain the sprite at different
horizontal positions, regardless of whether pictures are fields or frames (see picture coding mode (11.5)).
As a result, when frames are viewed as a set of raw interleaved fields, ragged edges will be visible.

Conversely, for progressive formats, sequential fields contain alternate lines from the same moment in time
and when interleaved should produce smooth edges, regardless of the picture coding mode.

In the very first field of the sequence, the left edge of the white triangle will touch the edge of the frame.
In interlaced formats, the top line of white pixels in the sprite will always be located on the top field. As a
result, the line immediately below should always appear shifted to the right when top-field-first field order
is used and shifted to the left when bottom-field-first order is used (see ‘top field first parameter’ (11.3)).

109

SMPTE VC-2 Conformance Software, Release v1.0.1

The sprite should be square with the white triangle having equal height and length and the hypotenuse lying
at an angle of 45 degrees. The circular cut-out should be a perfect circle. This verifies that the pictures are
displayed with the correct pixel aspect ratio (11.4.7).

The text in the sprite is provided to check that the correct picture orientation has been used.

The colors of the characters ‘V’, ‘C’ and ‘2’ are colored saturated primary red, green, and blue for the color
primaries used (11.4.10.2). This provides a basic verification that the color components have been provided
to the display system and decoded correctly.

static_sprite(video_parameters, picture_coding_mode)
A video sequence containing a exactly one frame containing a synthetic image.

This sequence consists of a 128 by 128 pixel sprite (shown below) located at the top-left corner of the frame
on a black background.

This test sequence may be used to verify that interlacing, pixel aspect ratio and frame-rate metadata is being
correctly reported by a codec for display purposes.

For if incorrect field ordering is specified, edges will appear ragged and not smooth.

The sprite should be square with the white triangle having equal height and length and the hypotenuse lying
at an angle of 45 degrees. The circular cut-out should be a perfect circle. This verifies that the pictures are
displayed with the correct pixel aspect ratio (11.4.7).

The text in the sprite is provided to check that the correct picture orientation has been used.

The colors of the characters ‘V’, ‘C’ and ‘2’ are colored saturated primary red, green, and blue for the color
primaries used (11.4.10.2). This provides a basic verification that the color components have been provided
to the display system and decoded correctly.

mid_gray(video_parameters, picture_coding_mode)
A video sequence containing exactly one empty mid-gray frame.

‘Mid gray’ is defined as having each color component set to the integer value exactly half-way along its
range. When encoded using VC-2 all transform coefficients will be zero.

The actual color will differ depending on the color model used and the signal offsets specified, though
typically a gray color is produced.

white_noise(video_parameters, picture_coding_mode, num_frames=1, seed=0)
A video sequence containing uniformly distributed pseudo-random full-range signal values.

Note: Because all picture components are filled with noise, the resulting pictures will contain ‘color’ noise
rather than black-and-white noise. This may include out-of-gamut signals.

By default a single frame is produced, but the num_frames argument may be used to specify more.

By default a fixed seed is used, but alternative seeds may be provided in the seed argument.

linear_ramps(video_parameters, picture_coding_mode)
An video sequence containing exactly one frame with a series of linear color ramps (illustrated below).

110 Chapter 9. Test picture generation reference

SMPTE VC-2 Conformance Software, Release v1.0.1

The frame is split into horizontal bands which contain, top to bottom:

• A black-to-white linear ramp

• A black-to-red linear ramp

• A black-to-green linear ramp

• A black-to-blue linear ramp

The color ramps are linear in intensity. For most color formats (using a non-linear transfer function) this
produces a non-linear ramp in coded pixel values. Further, the ramp will not be perceptually linear since
human vision does not have a linear response.

This is provided for the purposes of checking that metadata related to color is correctly passed through for
display purposes.

Longer sequences may be produced by repeating the pictures produced by the above generators:

repeat_pictures(pictures, count)
Repeat a sequence of pictures produced by a picture generator to produce a longer sequence.

Note: Where the picture coding mode indicates that pictures represents fields (not frames), an even number of
pictures (i.e. a whole number of frames) is always generated. This means that, for example, a single-frame picture
generator will generate two pictures for these formats.

9.2 vc2_conformance.dimensions_and_depths: Picture di-
mension and depth calculation

The vc2_conformance.dimensions_and_depths (page 111) module contains the
compute_dimensions_and_depths() (page 111) function which returns the picture dimensions
and bit depths implied by a VC-2 video format.

compute_dimensions_and_depths(video_parameters, picture_coding_mode)
Compute the dimensions, bit depth and bytes-per-sample of a picture.

Parameters

video_parameters [VideoParameters (page 142)]

picture_coding_mode [PictureCodingModes ([vc2_data_tables], page 4)]

Returns

OrderedDict An ordered dictionary mapping from component name (“Y”, “C1” and
“C2”) to a DimensionsAndDepths (page 111) (width, height, depth_bits,
bytes_per_sample) namedtuple.

9.2. vc2_conformance.dimensions_and_depths: Picture dimension and depth calculation111

SMPTE VC-2 Conformance Software, Release v1.0.1

class DimensionsAndDepths(width, height, depth_bits, bytes_per_sample)
A set of picture component dimensions and bit depths.

Parameters

width, height [int] The dimensions of the picture.

depth_bits [int] The number of bits per pixel.

bytes_per_sample [int] The number of bytes used to store each pixel value in raw file
formats (see vc2_conformance.file_format (page 117)).

9.3 vc2_conformance.color_conversion: Color conversion
routines

The vc2_conformance.color_conversion (page 112) module implements color system related func-
tions relating to the color formats supported by VC-2.

The primary use for this module is to provide routines for converting between colors specified by VC-2’s vari-
ous supported color systems (see Annex (E.1) of the VC-2 specification). This functionality is used during the
generation of certain encoder and decoder test cases (vc2_conformance.test_cases (page 63)).

9.3.1 High-level API

This module implements simple color format conversion routines for converting between arbitrary VC-2 color
formats via floating point CIE XYZ color. The process is implemented by the following high-level functions:

to_xyz(y, c1, c2, video_parameters)
Convert a picture from a native VC-2 integer Y C1 C2 format into floating point CIE XYZ format.

Parameters

y, c1, c2 [numpy.array] Three 2D numpy.arrays containing integer Y C1 C2 values
for a picture.

video_parameters [VideoParameters (page 142)] The VC-2 parameters describing
the video format in use. The following fields are required:

• color_diff_format_index

• luma_offset

• luma_excursion

• color_diff_offset

• color_diff_excursion

• color_primaries

• color_matrix

• transfer_function

Returns

yxz [numpy.array] A 3D numpy.array with dimensions (height, width, 3)
containing floating point CIE XYZ values for a picture.

from_xyz(xyz, video_parameters)
Convert a picture from CIE XYZ format into a native VC-2 integer, chroma subsampled Y C1 C2 format.

Parameters

yxz [numpy.array] A 3D numpy.array with dimensions (height, width, 3)
containing floating point CIE XYZ values for a picture.

112 Chapter 9. Test picture generation reference

SMPTE VC-2 Conformance Software, Release v1.0.1

video_parameters [VideoParameters (page 142)] The VC-2 parameters describing
the video format to produce. The following fields are required:

• color_diff_format_index

• luma_offset

• luma_excursion

• color_diff_offset

• color_diff_excursion

• color_primaries

• color_matrix

• transfer_function

Returns

y, c1, c2 [numpy.array] A set of three 2D numpy.array containing integer Y C1 C2
values for a picture. If chroma subsampling is used, the C1 and C2 arrays may differ in
size from the Y component.

Warning: Color format conversion is an extremely complex problem. The approach used by this module is
simplistic in both its approach and implementation. While it will always produce plausible colors, it may not
produce the best possible result. To give a few examples of limitations of this module:

• Potential numerical stability issues are ignored (e.g. YCgCo conversions may be lossy)

• No white point correction is applied

• Out-of-gamut colors are crudely clipped

• Poor quality antialiasing filters for chroma subsampling/interpolation

Finally, this module should be considered a ‘best effort’ at a correct implementation and the resulting color
conversion should largely be treated as informative.

Warning: Support to_xyz() (page 112) is limited to only formats using the tv_gamma transfer function.
All formats are supported, however, by from_xyz() (page 112).

9.3. vc2_conformance.color_conversion: Color conversion routines 113

SMPTE VC-2 Conformance Software, Release v1.0.1

9.3.2 Low-level API

The conversion processes used by to_xyz() (page 112) and from_xyz() (page 112) is built on a series of
lower-level transformations as described by the figure below. These lower-level primitives may be used directly
to perform more specialised conversions.

(Original Format)
Integer Y C1 C2

Floating Point
Y C1 C2

Floating Point
Y C1 C2 (4:4:4)

Non-linear
EREGEB

Linear RGB

CIE XYZ

(New Format)
Integer Y C1 C2

Floating Point
Y C1 C2

Floating Point
Y C1 C2 (4:4:4)

Non-linear
EREGEB

Linear RGB

int_to_float

to_444

INVERSE_COLOR_MATRICES

INVERSE_TRANSFER_FUNCTIONS

float_to_int_clipped

from_444

COLOR_MATRICES

TRANSFER_FUNCTIONS

LINEAR_RGB_TO_XYZ XYZ_TO_LINEAR_RGB

These steps build on the following conversion functions and matrices. These are implemented based on the
specifications cited by the VC-2 specification.

float_to_int_clipped(a, offset, excursion)
Convert (an array of) float sample values in the nominal range 0 to +1 or -0.5 to +0.5 to integers (with the
specified offset and excursion).

Values which fall outside the range of the integer representation are clipped.

float_to_int(a, offset, excursion)
Convert (an array of) float sample values in the nominal range 0 to +1 or -0.5 to +0.5 to integers (with the
specified offset and excursion).

Values which fall outside the range of the integer representation are not clipped. See
float_to_int_clipped() (page 114).

int_to_float(a, offset, excursion)
Convert (an array of) integer sample values from integers (with the specified offset and excursion) to floating
point values nominally in the range 0 to +1 or -0.5 to +0.5.

from_444(chroma, subsampling)
Subsample a chroma picture component into the specified ColorDifferenceSamplingFormats
([vc2_data_tables], page 4).

Warning: This function uses an extremely crude low-pass filter during downsampling which is likely
to produce aliasing artefacts. As such, pictures produced by this function should not be used for anything
where high fidelity is required.

114 Chapter 9. Test picture generation reference

SMPTE VC-2 Conformance Software, Release v1.0.1

to_444(chroma, subsampling)
Given a chroma picture subsampled according to the specified ColorDifferenceSamplingFormats
([vc2_data_tables], page 4), return an upsampled chroma signal.

Warning: This function uses an extremely crude anti-aliasing filter during upsampling which is likely
to produce artefacts. As such, pictures produced by this function should not be used for anything where
high fidelity is required.

COLOR_MATRICES = {<color matrix index>: <3x3 matrix>, ...}
For each color matrix supported by VC-2, a 3×3 matrix which transforms from non-linear RGB (𝐸𝑅𝐸𝐺𝐸𝐵)
to Y C1 C2.

INVERSE_COLOR_MATRICES = {<color matrix index>: <3x3 matrix>, ...}
For each color matrix supported by VC-2, a 3 × 3 matrix which transforms from Y C1 C2 to non-linear
RGB (𝐸𝑅𝐸𝐺𝐸𝐵).

TRANSFER_FUNCTIONS = {<transfer function index>: <function>, ...}
For each set of VC-2’s, supported transfer functions, a Numpy implementation of that function. These
functions implement the transform from linear to non-linear RGB, 𝐸𝑅𝐸𝐺𝐸𝐵 . These functions expect and
returns a single value or Numpy array of values.

INVERSE_TRANSFER_FUNCTIONS = {<transfer function index>: <function>, ...}
For (a subset of) VC-2’s, supported transfer functions, a Numpy implementation of the inverse function.
These functions implement the transform from non-linear to linear RGB. These functions expect and returns
a single value or Numpy array of values.

Warning: An inverse transfer function is currently only provided for tv_gamma because this is all
that was required at the time of development.

XYZ_TO_LINEAR_RGB = {<color primaries index>: <3x3 matrix>, ...}
For each set of color primaries in PresetColorPrimaries ([vc2_data_tables], page 5), a 3× 3 matrix
which converts from CIE XYZ into linear RGB.

LINEAR_RGB_TO_XYZ = {<color primaries index>: <3x3 matrix>, ...}
For each set of color primaries in PresetColorPrimaries ([vc2_data_tables], page 5), a 3× 3 matrix
which converts from linear RGB into CIE XYZ.

9.3.3 Additional utility functions

The following additional utility functions are provided for the manual evaluation of certain transform steps.

matmul_colors(matrix, array)
Given a (height, width, 3) 3D array, return a new 3D array where each triple in the first array has been
multiplied by the specified 3× 3 matrix.

swap_primaries(xyz, video_parameters_before, video_parameters_after)
Given an image defined in terms of one set of primaries, return a new image defined in terms of a different
set of primaries but with the same numerical R, G and B values under the new set of primaries.

This transformation is useful when an image is defined not by absolute colors but rather colors relative
to whatever primaries are in use. For example, a test pattern designed to show swatches of pure color
primaries may be given relative to a particular set of primaries but needs to be adapted for use with another
set of primaries.

Parameters

xyz [3× 3 array (height, width, 3)]

video_parameters_before [VideoParameters (page 142)]

9.3. vc2_conformance.color_conversion: Color conversion routines 115

SMPTE VC-2 Conformance Software, Release v1.0.1

video_parameters_after [VideoParameters (page 142)]

Returns

xyz [3× 3 array (height, width, 3)]

9.3.4 Color parameter sanity checking

The sanity_check_video_parameters() (page 116) function is provided which can check a given VC-2
video format is ‘sane’ – that is it might plausibly be able to represent some colors.

sanity_check_video_parameters(video_parameters)
Given a set of VideoParameters (page 142), check that a set of video parameters could plausibly be
used to encode a color signal (regardless of whether the color specification itself is sensible).

Specifically, the following checks are carried out:

• Are the luma and color difference signals at least 8 bits?

• Can white, black and saturated primary red, green and blue be encoded?

• When the RGB color matrix is used:

– Is the color difference sampling mode 4:4:4?

– Are the luma and chroma components the same depth?

Returns a ColorParametersSanity (page 116) as a result.

class ColorParametersSanity(luma_depth_sane=True, color_diff_depth_sane=True,
black_sane=True, white_sane=True,
red_sane=True, green_sane=True,
blue_sane=True, color_diff_format_sane=True,
luma_vs_color_diff_depths_sane=True)

Result of sanity_check_video_parameters() (page 116). Indicates the sanity (or insanity) of a
set of video parameters.

Truthy if sane, falsey otherwise.

Use the various properties to determine what is and is not sane.

Use the explain() (page 117) function to return a string with a human readable explanation.

property luma_depth_sane
True iff the luma component has been assigned at least 8 bits.

property color_diff_depth_sane
True iff the color difference components have been assigned at least 8 bits.

property black_sane
If True, the format can represent (video) black.

property white_sane
If True, the format can represent (video) white.

property red_sane
If True, the format can represent (video) primary red.

property green_sane
If True, the format can represent (video) primary green.

property blue_sane
If True, the format can represent (video) primary blue.

property color_diff_format_sane
True iff the color difference sampling format is appropriate for the color format.

False when non-4:4:4 sampling is used for RGB formats.

116 Chapter 9. Test picture generation reference

SMPTE VC-2 Conformance Software, Release v1.0.1

property luma_vs_color_diff_depths_sane
True iff the relative offsets/excursions of luma and color difference components are appropriately
matched.

False when not identical for RGB formats.

explain()
Return a human-readable explanation of why a video format is not sane (or simply state that it is sane,
if it is).

9.4 vc2_conformance.file_format: Picture file format I/O

The vc2_conformance.file_format (page 117) module contains functions for reading and writing raw
pictures and their metadata as files.

Picture and metadata files must come in pairs with the raw planar picture data file having the extension ‘.raw’ and
the metadata file having the extension ‘.json’. See Video file format (page 8) for a description of the file format.

The following functions may be used to read and write picture/metadata files:

read(filename)
Read a picture from a data and metadata file.

Convenience wrapper around read_picture() (page 118) and read_metadata() (page 117).

Parameters

filename [str] The filename of either the picture data file (.raw) or metadata file (.json). The
name of the other file will be inferred automatically.

Returns

picture [{“Y”: [[s, . . .], . . .], “C1”: . . . , “C2”: . . . , “pic_num”: int}]

video_parameters [VideoParameters (page 142)]

picture_coding_mode [PictureCodingModes ([vc2_data_tables], page 4)]

write(picture, video_parameters, picture_coding_mode, filename)
Write a picture to a data and metadata file.

Convenience wrapper around write_picture() (page 118) and write_metadata() (page 118).

Parameters

picture [{“Y”: [[s, . . .], . . .], “C1”: . . . , “C2”: . . . , “pic_num”: int}]

video_parameters [VideoParameters (page 142)]

picture_coding_mode [PictureCodingModes ([vc2_data_tables], page 4)]

filename [str] The filename of either the picture data file (.raw) or metadata file (.json). The
name of the other file will be inferred automatically.

The above functions are just wrappers around the following functions which read and write picture and metadata
files in isolation:

read_metadata(file)
Read a JSON picture metadata file.

Parameters

file [file] A file open for binary reading.

Returns

video_parameters [VideoParameters (page 142)]

picture_coding_mode [PictureCodingModes ([vc2_data_tables], page 4)]

9.4. vc2_conformance.file_format: Picture file format I/O 117

SMPTE VC-2 Conformance Software, Release v1.0.1

picture_number [int]

read_picture(video_parameters, picture_coding_mode, picture_number, file)
Read a picture from a file.

Parameters

video_parameters [VideoParameters (page 142)]

picture_coding_mode [PictureCodingModes ([vc2_data_tables], page 4)]

picture_number [int]

file [file] A file open for binary reading.

Returns

picture [{“Y”: [[s, . . .], . . .], “C1”: . . . , “C2”: . . . , “pic_num”: int}]

write_metadata(picture, video_parameters, picture_coding_mode, file)
Write the metadata associated with a decoded picture to a file as JSON.

Parameters

picture [{“Y”: [[s, . . .], . . .], “C1”: . . . , “C2”: . . . , “pic_num”: int}]

video_parameters [VideoParameters (page 142)]

picture_coding_mode [PictureCodingModes ([vc2_data_tables], page 4)]

file [file] A file open for binary writing.

write_picture(picture, video_parameters, picture_coding_mode, file)
Write a decoded picture to a file as a planar image.

Parameters

picture [{“Y”: [[s, . . .], . . .], “C1”: . . . , “C2”: . . . , “pic_num”: int}]

video_parameters [VideoParameters (page 142)]

picture_coding_mode [PictureCodingModes ([vc2_data_tables], page 4)]

file [file] A file open for binary writing.

Finally, the following function may be used to get the filenames for both parts of a picture/metadata file pair:

get_metadata_and_picture_filenames(filename)
Given either the filename of a saved picture (.raw) or metadata file (.json), return a (metadata_filename,
picture_filename) tuple with the names of the two corresponding files.

118 Chapter 9. Test picture generation reference

CHAPTER

TEN

LEVEL CONSTRAINT CHECKING/SOLVING REFERENCE

10.1 vc2_conformance.level_constraints: Level constraint
definitions

The vc2_conformance.level_constraints (page 119) module contains definitions of constraints im-
posed on VC-2 bitstreams by the various VC-2 level specifications.

10.1.1 Sequence data unit ordering restrictions

Levels may restrict the ordering or choice of data unit types within a bitstream. These restrictions are described us-
ing symbol_re (page 122) regular expressions provided in LEVEL_SEQUENCE_RESTRICTIONS (page 119).

LEVEL_SEQUENCE_RESTRICTIONS = {level: LevelSequenceRestrictions, ...}
A lookup from Levels to LevelSequenceRestrictions (page 119) (loaded from
vc2_conformance/level_sequence_restrictions.csv) describing the restrictions on
sequences imposed by each VC-2 level.

class LevelSequenceRestrictions(sequence_restriction_explanation, se-
quence_restriction_regex)

Restrictions on sequence orderings for a VC-2 level.

Parameters

sequence_restriction_explanation [str] A human readable explanation of the restriction
imposed (informative).

sequence_restriction_regex [str] A regular expression describing the sequence ordering
allowed which can be matched using a Matcher (page 124). Each symbol is a
ParseCodes ([vc2_data_tables], page 3) name string.

10.1.2 Coding parameter restrictions

Levels impose various restrictions on bitstream parameters and values. These restrictions are collected into a
constraint table (see constraint_table (page 128)) in LEVEL_CONSTRAINTS (page 119).

LEVEL_CONSTRAINTS = <constraint table>
A constraint table (see vc2_conformance.constraint_table (page 128)) loaded from
vc2_conformance/level_constraints.csv.

Constraints which apply due to levels. Keys correspond to particular bitstream values or properties and are
enumerated below:

• (11.2.1)

– level: int (from the Levels enum)

– profile: int (from the Profiles enum)

119

SMPTE VC-2 Conformance Software, Release v1.0.1

– major_version: int

– minor_version: int

• (11.1)

– base_video_format: int (from the BaseVideoFormats enum)

• (11.4.3)

– custom_dimensions_flag: bool

– frame_width: int

– frame_height: int

• (11.4.4)

– custom_color_diff_format_flag: bool

– color_diff_format_index: int (from the ColorDifferenceSamplingFormats
enum)

• (11.4.5)

– custom_scan_format_flag: bool

– source_sampling: int (from the SourceSamplingModes enum)

• (11.4.6)

– custom_frame_rate_flag: bool

– frame_rate_index: int (from the PresetFrameRates enum, or 0)

– frame_rate_numer: int

– frame_rate_denom: int

• (11.4.7)

– custom_pixel_aspect_ratio_flag: bool

– pixel_aspect_ratio_index: int (from the PresetPixelAspectRatios enum,
or 0)

– pixel_aspect_ratio_numer: int

– pixel_aspect_ratio_denom: int

• (11.4.8)

– custom_clean_area_flag: bool

– clean_width: int

– clean_height: int

– left_offset: int

– top_offset: int

• (11.4.9)

– custom_signal_range_flag: bool

– custom_signal_range_index: int (from the PresetSignalRanges enum, or 0)

– luma_offset: int

– luma_excursion: int

– color_diff_offset: int

– color_diff_excursion: int

• (11.4.10)

120 Chapter 10. Level constraint checking/solving reference

SMPTE VC-2 Conformance Software, Release v1.0.1

– custom_color_spec_flag: bool

– color_spec_index: int (from the PresetColorSpecs enum)

– custom_color_primaries_flag: bool

– color_primaries_index: int (from the PresetColorPrimaries enum)

– custom_color_matrix_flag: bool

– color_matrix_index: int (from the PresetColorMatrices enum)

– custom_transfer_function_flag: bool

– transfer_function_index: int (from the PresetTransferFunctions enum)

• (11.1)

– picture_coding_mode: int (from the PictureCodingModes enum)

• (12.4.1)

– wavelet_index: int (from the WaveletFilters enum)

– dwt_depth: int

• (12.4.4.1)

– asym_transform_index_flag: bool

– wavelet_index_ho: int (from the WaveletFilters enum)

– asym_transform_flag: bool

– dwt_depth_ho: int

• (12.4.5.2)

– slices_x: int (giving the allowed number of slices in the x dimension)

– slices_y: int (giving the allowed number of slices in the y dimension)

– slices_have_same_dimensions: bool. True iff all slices contain exactly the same
number of transform components.

– slice_bytes_numerator: int

– slice_bytes_denominator: int

– slice_prefix_bytes: int

– slice_size_scaler: int

• (12.4.5.3)

– custom_quant_matrix: bool

– quant_matrix_values: int (giving the allowed values within a custom quantisation
matrix).

• (13.5.3)

– qindex: int (the allowed qindex values as defined by individual slices)

• (13.5.3.2)

– total_slice_bytes: int (total number of bytes allowed in a high quality picture slice,
including all prefix bytes and slice size fields.

See also: LEVEL_CONSTRAINT_ANY_VALUES (page 121).

LEVEL_CONSTRAINT_ANY_VALUES = {key: ValueSet, ...}
For keys in LEVEL_CONSTRAINTS (page 119) which may hold AnyValue (page 130), defines an explicit
ValueSet (page 129) defining all valid values, for example when the key refers to an enumerated value.
Where the range of allowed values is truly open ended, no value is provided in this dictionary.

10.1. vc2_conformance.level_constraints: Level constraint definitions 121

SMPTE VC-2 Conformance Software, Release v1.0.1

10.2 vc2_conformance.symbol_re: Regular expressions for VC-
2 sequences

The vc2_conformance.symbol_re (page 122) module contains a regular expression matching system for
sequences of data unit types in VC-2 bitstreams.

This module has two main applications: checking the order of data units during validation and generating valid
sequences during bitstream generation.

During bitstream validation (see vc2_conformance.decoder (page 69)) the validator must check that se-
quences contain the right pattern of data unit types. For example, some levels might require bitstreams to include a
sequence header between each picture while others may require fragmented and non-fragmented picture types are
not used in the same stream. These rules are described by regular expressions which are evaluated by this module.

During bitstream generation, the encoder (see vc2_conformance.encoder (page 75)) must produce se-
quences conforming to the above patterns. To facilitate this, this module can also generate sequence orderings
which fulfil the rules described by regular expressions.

10.2.1 Regular expressions of symbols

Unlike string-matching regular expression libraries (e.g. re46) which match sequences of characters, this module
is designed to match sequences of ‘symbols’ where each symbol is just a string like "sequence_header" or
"high_quality_picture".

As an example, we might write the following regular expression to describe the rule ‘all sequences must start with
a sequence header and end with an end of sequence data unit’:

sequence_header .* end_of_sequence

In the regular expression syntax used by this module, whitespace is ignored but otherwise follows the typical form
for regular expressions. For example, . is a wildcard which matches any symbol and * means ‘zero or more
occurrences of the previous pattern’.

This regular expression would match the following sequence of symbols (data unit type names):

"sequence_header"
"high_quality_picture"
"sequence_header"
"high_quality_picture"
"end_of_sequence"

But would not match the following sequence (because it does not start with a sequence header):

"high_quality_picture"
"sequence_header"
"high_quality_picture"
"end_of_sequence"

46 https://docs.python.org/3/library/re.html#module-re

122 Chapter 10. Level constraint checking/solving reference

https://docs.python.org/3/library/re.html#module-re

SMPTE VC-2 Conformance Software, Release v1.0.1

10.2.2 Matching VC-2 sequences

The Matcher (page 124) class implements a regular expression matching state machine, taking the regular
expression to be matched as its argument. By convention, we use the parse code names defined in ParseCodes
([vc2_data_tables], page 3) as symbols to represent each type of data unit in a VC-2 sequence.

Data unit parse code Symbol
0 sequence_header
16 end_of_sequence
32 auxiliary_data
48 padding_data
200 low_delay_picture
232 high_quality_picture
204 low_delay_picture_fragment
236 high_quality_picture_fragment

In this example below we’ll create a Matcher (page 124) which checks if a sequence consists of alternating
sequence headers and high quality picture data units:

>>> from vc2_conformance.symbol_re import Matcher

>>> m = Matcher("(sequence_header high_quality_picture)* end_of_sequence")

This Matcher (page 124) instance is then used to check if a sequence matches the required pattern by feeding it
symbols one at a time via the match_symbol() (page 125) method. This returns True so long as the sequence
matches to expression:

>>> m.match_symbol("sequence_header")
True
>>> m.match_symbol("high_quality_picture")
True
>>> m.match_symbol("sequence_header")
True
>>> m.match_symbol("high_quality_picture")
True

When we reach the end of the sequence, the is_complete() (page 125) method will check to see if the regular
expression has completely matched the sequence (i.e. it isn’t expecting any other data units):

>>> # Missing the required end_of_sequence!
>>> m.is_complete()
False

>>> # Now complete
>>> m.match_symbol("end_of_sequence")
True
>>> m.is_complete()
True

When a non-matching sequence is encountered, the Matcher.valid_next_symbols() (page 125) method
may be used to enumerate which symbols the regular expression matcher was expecting. For example:

>>> # NB: Each Matcher can only be used once so we must create a new one
>>> # for this new sequence!
>>> m = Matcher("(sequence_header high_quality_picture)* end_of_sequence")

>>> m.match_symbol("sequence_header")
True
>>> m.match_symbol("high_quality_picture")
True

(continues on next page)

10.2. vc2_conformance.symbol_re: Regular expressions for VC-2 sequences 123

SMPTE VC-2 Conformance Software, Release v1.0.1

(continued from previous page)

>>> m.match_symbol("high_quality_picture") # Not allowed!
False
>>> m.valid_next_symbols()
{"sequence_header", "end_of_sequence"}

10.2.3 Generating VC-2 sequences

This module provides the make_matching_sequence() (page 125) function which can generate minimal
sequences matching a set of regular expressions. For example, say we wish to generate a sequence containing
three pictures matching the regular expression we used in our previous example:

>>> from vc2_conformance.symbol_re import make_matching_sequence

>>> from pprint import pprint
>>> pprint(make_matching_sequence(
... ["high_quality_picture"]*3,
... "(sequence_header high_quality_picture)* end_of_sequence",
...))
['sequence_header',
'high_quality_picture',
'sequence_header',
'high_quality_picture',
'sequence_header',
'high_quality_picture',
'end_of_sequence']

Here, the sequence headers and the final end of sequence data units have been added automatically.

10.2.4 API

class Matcher(pattern)
Test whether a sequence of symbols (alpha-numeric strings with underscores, e.g. "foo" or "bar_123")
conforms to a pattern described by a regular expression.

match_symbol() (page 125) should be called for each symbol in the sequence. If False is returned,
the sequence does not match the specified regular expression. valid_next_symbols() (page 125)
may be used to list what symbols would have been allowed at this stage of the sequence. Once the entire
sequence has been passed to match_symbol() (page 125), is_complete() (page 125) should be
used to check that a complete pattern has been matched.

Note: Each instance of Matcher (page 124) can only be used to match a single sequence. To match
another sequence a new Matcher (page 124) must be created.

Parameters

pattern [str] The regular expression describing the pattern this Matcher (page 124)
should match.

Regular expressions may be specified with a syntax similar (but different to) that used
by common string-matching regular expression libraries.

• An alpha-numeric-with-underscore expression matches a single instance of the spec-
ified symbol. For example foo_123 will match the symbol "foo_123".

• A dot (.) will match any (singular) symbol.

• A dollar ($) will match only at the end of the sequence.

124 Chapter 10. Level constraint checking/solving reference

SMPTE VC-2 Conformance Software, Release v1.0.1

• Two expressions (separated by any amount of whitespace) will match the first ex-
pression followed by the second. For example . foo will match a sequence
"anything", "foo".

• Two expressions separated by a bar (|) will match either the first expression or the
second expression.

• A question mark (?) suffix to an expression will match zero or one instances of that
expression. For example foo? will match an empty sequence or a single "foo".

• An asterisk (*) suffix to an expression will match zero or more instances of that
expression. For example foo* will match an empty sequence, a sequence of a single
"foo" symbol or a sequence of many "foo" symbols.

• A plus (+) suffix to an expression will match one or more instances of that expression.
For example foo+ will match a sequence of a single "foo" symbol or a sequence
of many "foo" symbols.

• Parentheses ((and)) may be used to group expressions together into a single logical
expression.

The expression suffixes bind tightly to their left-hand expression. Beyond this, consider
operator precedence undefined: be explicit to help readability!

match_symbol(symbol)
Attempt to match the next symbol in the sequence.

Returns True if the symbol matched and False otherwise.

If no symbol was matched, the state machine will not be advanced (i.e. you can try again with a
different symbol as if nothing happened).

is_complete()
Is it valid for the sequence to terminate at this point?

valid_next_symbols()
Return the set47 of valid next symbols in the sequence.

If a wildcard is allowed, WILDCARD (page 126) will be returned as one of the symbols in addition to
any concretely allowed symbols.

If it is valid for the sequence to end at this point, END_OF_SEQUENCE (page 126) will be in the
returned set.

make_matching_sequence(initial_sequence, *patterns, **kwargs)
Given a sequence of symbols, returns a new sequence based on this which matches the supplied set of
patterns. The new sequence will be a copy of the supplied sequence with additional symbols inserted where
necessary.

Parameters

initial_sequence [[symbol, . . .]] The minimal set of entries which must be included in the
sequence, in the order they are required to appear.

patterns [str] A series of one or more regular expression specifications (as accepted by
Matcher (page 124)) which the generated sequence must simultaneously satisfy.

depth_limit [int] Keyword-only argument specifying the maximum number of consecutive
symbols to try inserting before giving up on finding a matching sequence. Defaults to
4.

symbol_priority [[symbol, . . .]] Keyword-only argument. If supplied, orders possible
symbols from most to least preferable. Though this function will always return a se-
quence of the shortest possible length, when several equal-length sequences would be
valid, this argument may be used to influence which is returned. Any symbols not ap-
pearing in the list will be given the lowest priority, and sorted in alphabetical order. If

47 https://docs.python.org/3/library/stdtypes.html#set

10.2. vc2_conformance.symbol_re: Regular expressions for VC-2 sequences 125

https://docs.python.org/3/library/stdtypes.html#set

SMPTE VC-2 Conformance Software, Release v1.0.1

this argument is not supplied (or is empty), whenever ‘wildcard’ value (.) is required
by a regular expression, the WILDCARD (page 126) sentinel will be inserted into the
output sequence rather than a concrete symbol.

Returns

matching_sequence [[symbol, . . .]] The shortest sequence of symbols which satisfies all
of the supplied regular expression patterns. This will contain a superset of the sequence
in initial_sequence, that is one where additional symbols may have been inserted
but none are removed or reordered.

Raises

ImpossibleSequenceError Thrown if no sequence of symbols could be found which
matches all of the supplied patterns.

WILDCARD = '.'
A constant representing a wildcard match.

END_OF_SEQUENCE = ''
A constant representing the end-of-sequence.

exception SymbolRegexSyntaxError
Thrown when a regular expression string is provided which could not be parsed.

exception ImpossibleSequenceError
Thrown when make_matching_sequence() (page 125) is unable to find a suitable sequence of sym-
bols.

10.2.5 Internals

Beyond the parts exposed by the public API above, this module internally is built on top of two main parts:

• A parser which parses the regular expression syntax accepted by Matcher (page 124) into an Abstract
Syntax Tree (AST)

• A Non-deterministic Finite-state Automaton (NFA) representation which is constructed from the AST using
Thompson’s constructions48.

The parser is broken into two stages: a simple tokenizer/lexer (tokenize_regex() (page 126)) and a recursive
descent parser (parse_expression() (page 126)). A utility function combining these steps is provided by
parse_regex() (page 127).

tokenize_regex(regex_string)
A generator which tokenizes a sequence regular expression specification into (token_type, token_value,
offset) 3-tuples.

Token types are:

• "string" (value is the string)

• "modifier" (value is one of ?*+)

• "wildcard" (value is .)

• "end_of_sequence" (value is $)

• "bar" (value is |)

• "parenthesis" (value is one of ())

Throws a SymbolRegexSyntaxError (page 126) if an invalid character is encountered.

parse_expression(tokens)
A recursive-descent parser which parses an Abstract Syntax Tree (AST) from the regex specification.

48 https://en.wikipedia.org/wiki/Thompson%27s_construction

126 Chapter 10. Level constraint checking/solving reference

https://en.wikipedia.org/wiki/Thompson%27s_construction

SMPTE VC-2 Conformance Software, Release v1.0.1

The parsed tokens will be removed from the provided token list. Tokens are consumed right-to-left making
implementing tight binding of modifiers (i.e. ‘?’, ‘*’ and ‘+’) easy.

This function will return as soon as it runs out of tokens or reaches an unmatched opening parenthesis.

Returns an AST node: one of Symbol (page 127), Star (page 127), Concatenation (page 127),
Union (page 127) or None.

parse_regex(regex_string)
Parse a sequence regular expression specification into an Abstract Syntax Tree (AST) consisting of None
(empty), Symbol (page 127), Star (page 127) Concatenation (page 127) and Union (page 127)
objects.

The parser outputs an AST constructed from the following elements:

class Symbol(symbol)
Leaf AST node for a symbol.

class Star(expr)
AST node for a Kleene Star pattern (*).

class Concatenation(a, b)
AST node for a concatenation of two expressions.

class Union(a, b)
AST node for a union (|) of two expressions.

An NFA can be constructed from an AST using the NFA.from_ast() (page 127) class method.

class NFA(start=None, final=None)
A Non-deterministic Finite-state Automaton (NFA) with a labelled ‘start’ and ‘final’ state.

Attributes

start [NFANode (page 127)]

final [NFANode (page 127)]

classmethod from_ast(ast)
Convert a regular expression AST node into a new NFA (page 127) object using Thompson’s construc-
tions49.

class NFANode
A node (i.e. state) in a Non-deterministic Finite-state Automaton (NFA).

Attributes

transitions [{symbol: set([NFANode (page 127), . . .]), . . . }] The transition rules from this
node.

Empty transitions are listed under the symbol None and are always bidirectional.

add_transition(dest_node, symbol=None)
Add a transition rule from this node to the specified destination.

If no symbols are specified, a (bidirectional) empty transition between the two nodes will be added.

equivalent_nodes()
Iterate over the set of NFANode (page 127) nodes connected to this one by only empty transitions
(includes this node).

follow(symbol)
Iterate over the NFANodes (page 127) reachable from this node following the given symbol.

49 https://en.wikipedia.org/wiki/Thompson%27s_construction

10.2. vc2_conformance.symbol_re: Regular expressions for VC-2 sequences 127

https://en.wikipedia.org/wiki/Thompson%27s_construction
https://en.wikipedia.org/wiki/Thompson%27s_construction

SMPTE VC-2 Conformance Software, Release v1.0.1

10.3 vc2_conformance.constraint_table: A simple con-
straints model

The vc2_conformance.constraint_table (page 128) module describes a constraint system which is
used to describe restrictions imposed by VC-2 levels. See vc2_conformance.level_constraints.
LEVEL_CONSTRAINTS (page 119) for the actual level constraints table.

10.3.1 Tutorial

Constraint tables enumerate allowed combinations of values as a list of dictionaries containing ValueSet
(page 129) objects. Each dictionary describes a valid combination of values. In the contrived running exam-
ple below we’ll define valid food-color combinations (rather than VC-2 codec options):

>>> real_foods = [
... {"type": ValueSet("tomato"), "color": ValueSet("red")},
... {"type": ValueSet("apple"), "color": ValueSet("red", "green")},
... {"type": ValueSet("beetroot"), "color": ValueSet("purple")},
...]

We can check dictionaries of values against this permitted list of combinations using
is_allowed_combination() (page 131):

>>> # Allowed combinations
>>> is_allowed_combination(real_foods, {"type": "tomato", "color": "red"})
True
>>> is_allowed_combination(real_foods, {"type": "apple", "color": "red"})
True
>>> is_allowed_combination(real_foods, {"type": "apple", "color": "green"})
True

>>> # Purple apples? I don't think so...
>>> is_allowed_combination(real_foods, {"type": "apple", "color": "purple"})
False

But we don’t have to check a complete set of values. For example, we can check if a particular color is valid for
any foodstuff:

>>> is_allowed_combination(real_foods, {"color": "red"})
True
>>> is_allowed_combination(real_foods, {"color": "yellow"})
False

This behaviour allows us to detect the first non-constraint-satisfying value when values are obtained sequentially
(as they are for a VC-2 bitstream). The bitstream validator (vc2_conformance.decoder (page 69)) uses
this functionality to check bitstream values conform to the constraints imposed by a specified VC-2 level.

Given an incomplete set of values, we can use allowed_values_for() (page 131) to discover what values
are permissible for values we’ve not yet assigned. For example:

>>> # If we have an apple, what colors can it be?
>>> allowed_values_for(real_foods, "color", {"type": "apple"})
ValueSet('red', 'green')

>>> # If we have something red, what might it be?
>>> allowed_values_for(real_foods, "type", {"color": "red"})
ValueSet('apple', 'tomato')

This functionality is used by the test case generators and encoder (vc2_conformance.test_cases
(page 63) and vc2_conformance.encoder (page 75)) to discover combinations of bitstream features which
satisfy particular level requirements.

128 Chapter 10. Level constraint checking/solving reference

SMPTE VC-2 Conformance Software, Release v1.0.1

10.3.2 ValueSet

class ValueSet(*values_and_ranges)
Represents a set of allowed values. May consist of anything from a single value, a range of values or a
combination of several of these.

__init__(*values_and_ranges)
Create a ValueSet (page 129) containing the specified set of values:

>>> no_values = ValueSet()
>>> 100 in no_values
False

>>> single_value = ValueSet(100)
>>> 100 in single_value
True
>>> 200 in single_value
False

>>> range_of_values = ValueSet((10, 20))
>>> 9 in range_of_values
False
>>> 10 in range_of_values
True
>>> 11 in range_of_values
True
>>> 20 in range_of_values # NB: Range is inclusive
True
>>> 21 in range_of_values
False

>>> many_values = ValueSet(100, 200, (300, 400))
>>> 100 in many_values
True
>>> 200 in many_values
True
>>> 300 in many_values
True
>>> 350 in many_values
True
>>> 500 in many_values
False

>>> non_numeric = ValueSet("foo", "bar", "baz")
>>> "foo" in non_numeric
True
>>> "nope" in non_numeric
False

Parameters

*values_and_ranges [value, or (lower_value, upper_value)] Sets the initial set of values
and (inclusive) ranges to be matched

add_value(value)
Add a single value to the set.

add_range(lower_bound, upper_bound)
Add the range of values between the two inclusive bounds to the set.

__contains__(value)
Test if a value is a member of this set. For example:

10.3. vc2_conformance.constraint_table: A simple constraints model 129

SMPTE VC-2 Conformance Software, Release v1.0.1

>>> value_set = ValueSet(1, 2, 3)
>>> 1 in value_set
True
>>> 100 in value_set
False

is_disjoint(other)
Test if this ValueSet (page 129) is disjoint from another – i.e. they share no common values.

__eq__(other)
Return self==value.

__add__(other)
Combine two ValueSet (page 129) objects into a single object containing the union of both of their
values.

For example:

>>> a = ValueSet(123)
>>> b = ValueSet((10, 20))
>>> a + b
ValueSet(123, (10, 20))

__iter__()
Iterate over the values and (lower_bound, upper_bound) tuples in this value set in no particular order.

iter_values()
Iterate over the values (including the enumerated values of ranges) in this value set in no particular
order.

__str__()
Produce a human-readable description of the permitted values.

For example:

>>> print(ValueSet())
{<no values>}
>>> print(ValueSet(1, 2, 3, (10, 20)))
{1, 2, 3, 10-20}

class AnyValue
Like ValueSet (page 129) but represents a ‘wildcard’ set of values which contains all possible values.

10.3.3 Constraint tables

A ‘constraint table’ is defined as a list of ‘allowed combination’ dictionaries.

An ‘allowed combination’ dictionary defines a ValueSet (page 129) for every permitted key.

For example, the following is a constraint table containing three allowed combination dictionaries:

>>> real_foods = [
... {"type": ValueSet("tomato"), "color": ValueSet("red")},
... {"type": ValueSet("apple"), "color": ValueSet("red", "green")},
... {"type": ValueSet("beetroot"), "color": ValueSet("purple")},
...]

A set of values satisfies a constraint table if there is at least one allowed combination dictionary which contains
the specified combination of values. For example, the following two dictionaries satisfy the constraint table:

{"type": "apple", "color": "red"}

{"color": "red"}

130 Chapter 10. Level constraint checking/solving reference

SMPTE VC-2 Conformance Software, Release v1.0.1

The first satisfies the constraint table because the combination of values given appears in the second entry of the
constraint table.

The second satisfies the constraint table because, even though it does not define a value for every key, the key it
does define is included in both the first and second entries.

Meanwhile, the following dictionaries do not satisfy the constraint table:

{"type": "apple", "color": "purple"}

{"type": "beetroot", "color": "purple", "pickleable": True}

The first of these contains values which, in isolation, would be permitted by the second and third entries of the
table but which are not present together in any table entries. Consequently, this value does not satisfy the table.

The second contains a ‘pickleable’ key which is not present in any of the allowed combinations in constraint table
and so does not satisfy the table.

The functions below may be used to interrogate a constraint table.

filter_constraint_table(constraint_table, values)
Return the subset of constraint_table entries which match all of the values in values. That is, with
the entries whose constraints are not met by the provided values removed.

is_allowed_combination(constraint_table, values)
Check to see if the values dictionary holds an allowed combination of values according to the provided
constraint table.

Note: A candidate containing only a subset of the keys listed in the constraint table is allowed if the fields
it does define are a permitted combination.

Parameters

constraint_table: [{key: :py:class:`ValueSet`, . . . }, . . .]

values [{key: value}]

allowed_values_for(constraint_table, key, values={}, any_value=AnyValue())
Return a ValueSet (page 129) which matches all allowed values for the specified key, given the existing
values defined in values.

Parameters

constraint_table [[{key: ValueSet (page 129), . . . }, . . .]]

key [key]

values [{key: value, . . . }] Optional. The values already chosen. (Default: assume nothing
chosen).

any_value [ValueSet (page 129)] Optional. If provided and AnyValue (page 130) is
allowed, this value will be substituted instead. This may be useful when AnyValue
(page 130) is being used as a short-hand for a more concrete set of values.

10.3. vc2_conformance.constraint_table: A simple constraints model 131

SMPTE VC-2 Conformance Software, Release v1.0.1

10.3.4 CSV format

A Constraint table can be read from CSV files using the following function:

read_constraints_from_csv(csv_filename)
Reads a table of constraints from a CSV file.

The CSV file should be arranged with each row describing a particular value to be constrained and each
column defining an allowed combination of values.

Empty rows and rows containing only ‘#’ prefixed values will be skipped.

The first column will be treated as the keys being constrained, remaining columns should contain allowed
combinations of values. Each of these values will be converted into a ValueSet (page 129) as follows:

• Values which contain integers will be converted to int

• Values which contain ‘TRUE’ or ‘FALSE’ will be converted to bool

• Values containing a pair of integers separated by a - will be treated as an incusive range.

• Several comma-separated instances of the above will be combined into a single ValueSet
(page 129). (Cells containing comma-separated values will need to be enclosed in double quotes
(") in the CSV).

• The value ‘any’ will be substituted for AnyValue (page 130).

• Empty cells will be converted into empty ValueSets (page 129).

• Cells which contain only a pair of quotes (e.g. ", i.e. ditto) will be assigned the same value as the
column to their left. (This is encoded using four double quotes ("""") in CSV format).

The read constraint table will be returned as a list of dictionaries (one per column) as expected by the
functions in vc2_conformance.constraint_table (page 128).

132 Chapter 10. Level constraint checking/solving reference

CHAPTER

ELEVEN

VC2_CONFORMANCE.PSEUDOCODE: VC-2 PSEUDOCODE FUNCTION
IMPLEMENTATIONS

The vc2_conformance.pseudocode (page 133) module contains implementations of many of the VC-2
pseudocode functions and associated data structures. In particular, it includes everything which can be used as-is
in the construction of encoders, decoders and so on without any alterations.

The VC-2 pseudocode is augmented by a modest number of additional functions or data structure fields. For
instance, additional fields are added to State (page 139) which are used by conformance checking routines and
forward wavelet transform routines.

11.1 vc2_conformance.pseudocode.arrays

VC-2 style 2D array functions (5.5).

new_array(*dimensions)
(5.4.2) Makes an N-dimensional array out of nested lists. Dimensions are given in the same order as they
are indexed, e.g. new_array(height, width), like array[y][x].

width(a)
(5.5.4)

height(a)
(5.5.4)

row(a, k)
(15.4.1) A 1D-array-like view into a row of a (2D) nested list as returned by new_array() (page 133).

class column(a, k)
(15.4.1) A 1D-array-like view into a column of a (2D) nested list as returned by new_array() (page 133).

delete_rows_after(a, k)
(15.4.5) Delete rows ‘k’ and after in ‘a’.

delete_columns_after(a, k)
(15.4.5) Delete columns ‘k’ and after in ‘a’.

11.2 vc2_conformance.pseudocode.offsetting

Picture component offsetting routines (15)

This module collects picture component value offsetting functions from (15) and augments these with comple-
mentary de-offsetting functions (inferred from, but not defined by the standard).

offset_picture(state, current_picture)
(15.5) Remove picture value offsets (added during encoding).

Parameters

133

SMPTE VC-2 Conformance Software, Release v1.0.1

state [vc2_conformance.pseudocode.state.State (page 139)] Where
luma_depth and color_diff_depth are defined.

current_picture [{comp: [[pixel_value, . . .], . . .], . . . }] Will be mutated in-place.

offset_component(state, comp_data, c)
(15.5) Remove picture value offsets from a single component.

remove_offset_picture(state, current_picture)
Inverse of offset_picture (15.5). Centers picture values around zero.

remove_offset_component(state, comp_data, c)
Inverse of offset_component (15.5). Centers picture values around zero.

Parameters

state [vc2_conformance.pseudocode.state.State (page 139)] Where
luma_depth and color_diff_depth are defined.

current_picture [{comp: [[pixel_value, . . .], . . .], . . . }] Will be mutated in-place.

11.3 vc2_conformance.pseudocode.parse_code_functions

Parse code classification functions (Table 10.2)

These functions all take a ‘state’ dictionary containing at least parse_code which should be an int or
ParseCodes enum value.

is_seq_header(state)
(Table 10.2)

is_end_of_sequence(state)
(Table 10.2)

is_auxiliary_data(state)
(Table 10.2)

is_padding_data(state)
(Table 10.2)

is_ld(state)
(Table 10.2)

is_hq(state)
(Table 10.2)

is_picture(state)
(Table 10.2)

is_fragment(state)
(Table 10.2)

using_dc_prediction(state)
(Table 10.2)

134 Chapter 11. vc2_conformance.pseudocode: VC-2 pseudocode function implementations

SMPTE VC-2 Conformance Software, Release v1.0.1

11.4 vc2_conformance.pseudocode.picture_decoding

This module contains the wavelet synthesis filters and associated functions defined in the pseudocode of the VC-2
standard (15).

See also vc2_conformance.pseudocode.picture_encoding (page 136).

inverse_wavelet_transform(state)
(15.3)

idwt(state, coeff_data)
(15.4.1)

Inverse Discrete Wavelet Transform.

Parameters

state [State (page 139)] A state dictionary containing at least the following:

• wavelet_index

• wavelet_index_ho

• dwt_depth

• dwt_depth_ho

coeff_data [{level: {orientation: [[coeff, . . .], . . .], . . . }, . . . }] The complete (power-of-two
dimensioned) transform coefficient data.

Returns

picture [[[pixel_value, . . .], . . .]] The synthesized picture.

h_synthesis(state, L_data, H_data)
(15.4.2) Horizontal-only synthesis.

vh_synthesis(state, LL_data, HL_data, LH_data, HH_data)
(15.4.3) Interleaved vertical and horizontal synthesis.

oned_synthesis(A, filter_index)
(15.4.4.1) and (15.4.4.3). Acts in-place on ‘A’

filter_bit_shift(state)
(15.4.2) Return the bit shift for the current horizontal-only filter.

lift1(A, L, D, taps, S)
(15.4.4.1) Update even, add odd.

lift2(A, L, D, taps, S)
(15.4.4.1) Update even, subtract odd.

lift3(A, L, D, taps, S)
(15.4.4.1) Update odd, add even.

lift4(A, L, D, taps, S)
(15.4.4.1) Update odd, subtract even.

idwt_pad_removal(state, pic, c)
(15.4.5)

offset_picture(state, current_picture)
(15.5) Remove picture value offsets (added during encoding).

Parameters

state [vc2_conformance.pseudocode.state.State (page 139)] Where
luma_depth and color_diff_depth are defined.

current_picture [{comp: [[pixel_value, . . .], . . .], . . . }] Will be mutated in-place.

11.4. vc2_conformance.pseudocode.picture_decoding 135

SMPTE VC-2 Conformance Software, Release v1.0.1

offset_component(state, comp_data, c)
(15.5) Remove picture value offsets from a single component.

clip_picture(state, current_picture)
(15.5)

clip_component(state, comp_data, c)
(15.5)

SYNTHESIS_LIFTING_FUNCTION_TYPES = {...}
Lookup from lifting function ID to function implementation for implementing wavelet synthesis.

11.5 vc2_conformance.pseudocode.picture_encoding

This module is the inverse of the vc2_conformance.pseudocode.picture_decoding (page 135)
module and contains functions for performing wavelet analysis filtering.

This functionality is not specified by the standard but is used to generate simple bitstreams (and test cases) in this
software (and its test suite).

picture_encode(state, current_picture)
Inverse of picture_decode (15.2).

Parameters

state [vc2_conformance.pseudocode.state.State (page 139)] A state dictio-
nary containing at least:

• luma_width

• luma_height

• color_diff_width

• color_diff_height

• luma_depth

• color_diff_depth

• wavelet_index

• wavelet_index_ho

• dwt_depth

• dwt_depth_ho

The following entries will be added/replaced with the encoded picture.

• y_transform

• c1_transform

• c3_transform

current_picture [{component: [[value, . . .], . . .], . . . }] The picture to be encoded.

forward_wavelet_transform(state, current_picture)
(15.3)

dwt(state, picture)
Discrete Wavelet Transform, inverse of idwt (15.4.1)

Parameters

state [State (page 139)] A state dictionary containing at least the following:

• wavelet_index

136 Chapter 11. vc2_conformance.pseudocode: VC-2 pseudocode function implementations

SMPTE VC-2 Conformance Software, Release v1.0.1

• wavelet_index_ho

• dwt_depth

• dwt_depth_ho

picture [[[pixel_value, . . .], . . .]] The synthesized picture.

Returns

coeff_data [{level: {orientation: [[coeff, . . .], . . .], . . . }, . . . }] The complete (power-of-two
dimensioned) transform coefficient data.

h_analysis(state, data)
Horizontal-only analysis, inverse of h_synthesis (15.4.2).

Returns a tuple (L_data, H_data)

vh_analysis(state, data)
Interleaved vertical and horizontal analysis, inverse of vh_synthesis (15.4.3).

Returns a tuple (LL_data, HL_data, LH_data, HH_data)

oned_analysis(A, filter_index)
Inverse of oned_synthesis (15.4.4.1) and (15.4.4.3). Acts in-place on ‘A’

dwt_pad_addition(state, pic, c)
Inverse of idwt_pad_removal (15.4.5): pads a picture to a size compatible with wavelet filtering at the level
specified by the provided State (page 139).

Extra values are obtained by copying the final pixels in the existing rows and columns.

remove_offset_picture(state, current_picture)
Inverse of offset_picture (15.5). Centers picture values around zero.

remove_offset_component(state, comp_data, c)
Inverse of offset_component (15.5). Centers picture values around zero.

Parameters

state [vc2_conformance.pseudocode.state.State (page 139)] Where
luma_depth and color_diff_depth are defined.

current_picture [{comp: [[pixel_value, . . .], . . .], . . . }] Will be mutated in-place.

ANALYSIS_LIFTING_FUNCTION_TYPES = {...}
Lookup from lifting function ID to function implementation for implementing wavelet analysis.

11.6 vc2_conformance.pseudocode.quantization

Quantization-related VC-2 pseudocode routines (13.3).

inverse_quant(quantized_coeff, quant_index)
(13.3.1)

forward_quant(coeff, quant_index)
(13.3.1) Based on the informative note 1.

quant_factor(index)
(13.3.2)

quant_offset(index)
(13.3.2)

11.6. vc2_conformance.pseudocode.quantization 137

SMPTE VC-2 Conformance Software, Release v1.0.1

11.7 vc2_conformance.pseudocode.slice_sizes

Slice size computation functions (13)

All of the functions below take a ‘state’ argument which should be a dictionary-like object containing the following
entries:

• "luma_width"

• "luma_height"

• "color_diff_width"

• "color_diff_height"

• "dwt_depth"

• "dwt_depth_ho"

The slice_bytes() (page 138), slice_top() (page 138), slice_bottom() (page 138),
slice_left() (page 138), slice_right() (page 138) and slices_have_same_dimensions()
(page 138) functions all additionally require the following entries:

• "slices_x"

• "slices_y"

Finally slice_bytes() (page 138) function requires the following further values:

• "slice_bytes_numerator"

• "slice_bytes_denominator"

The ‘c’ or ‘comp’ arguments should be set to one of the following strings:

• "Y"

• "C1"

• "C2"

The slices_have_same_dimensions() (page 138) utility is added beyond the VC-2 pseudocode func-
tions which determines if all slices will contain the same number of samples or not.

subband_width(state, level, comp)
(13.2.3)

subband_height(state, level, comp)
(13.2.3)

slice_bytes(state, sx, sy)
(13.5.3.2) Compute the number of bytes in a low-delay picture slice.

slice_left(state, sx, c, level)
(13.5.6.2) Get the x coordinate of the LHS of the given slice.

slice_right(state, sx, c, level)
(13.5.6.2) Get the x coordinate of the RHS of the given slice.

slice_top(state, sy, c, level)
(13.5.6.2) Get the y coordinate of the top of the given slice.

slice_bottom(state, sy, c, level)
(13.5.6.2) Get the y coordinate of the bottom of the given slice.

slices_have_same_dimensions(state)
Utility function, not part of the standard. Tests whether all picture slices will have the same dimensions.

138 Chapter 11. vc2_conformance.pseudocode: VC-2 pseudocode function implementations

SMPTE VC-2 Conformance Software, Release v1.0.1

11.8 vc2_conformance.pseudocode.state

A fixeddict (page 157) for the ‘state’ object used by the pseudocode in the VC-2 spec.

fixeddict State
The global state variable type.

Entries prefixed with an underscore (_) are not specified by the VC-2 pseudocode but may be used by the
conformance software.

Keys

video_parameters [VideoParameters (page 142)] Set by (10.4.1) parse_sequence

parse_code [ParseCodes ([vc2_data_tables], page 3)] Set by (10.5.1) parse_info

next_parse_offset [int] Set by (10.5.1) parse_info

previous_parse_offset [int] Set by (10.5.1) parse_info

picture_coding_mode [PictureCodingModes ([vc2_data_tables], page 4)] Set by
(11.1) sequence_header

major_version [int] Set by (11.2.1) parse_parameters

minor_version [int] Set by (11.2.1) parse_parameters

profile [Profiles ([vc2_data_tables], page 7)] Set by (11.2.1) parse_parameters

level [Profiles ([vc2_data_tables], page 7)] Set by (11.2.1) parse_parameters

luma_width [int] Set by (11.6.2) picture_dimensions

luma_height [int] Set by (11.6.2) picture_dimensions

color_diff_width [int] Set by (11.6.2) picture_dimensions

color_diff_height [int] Set by (11.6.2) picture_dimensions

luma_depth [int] Set by (11.6.3) video_depth

color_diff_depth [int] Set by (11.6.3) video_depth

picture_number [int] Set by (12.2) picture_header and (14.2) fragment_header

wavelet_index [WaveletFilters ([vc2_data_tables], page 7)] Set by (12.4.1) trans-
form_parameters

dwt_depth [int] Set by (12.4.1) transform_parameters

wavelet_index_ho [WaveletFilters ([vc2_data_tables], page 7)] Set by (12.4.4.1) ex-
tended_transform_parameters

dwt_depth_ho [int] Set by (12.4.4.1) extended_transform_parameters

slices_x [int] Set by (12.4.5.2) slice_parameters

slices_y [int] Set by (12.4.5.2) slice_parameters

slice_bytes_numerator [int] Set by (12.4.5.2) slice_parameters

slice_bytes_denominator [int] Set by (12.4.5.2) slice_parameters

slice_prefix_bytes [int] Set by (12.4.5.2) slice_parameters

slice_size_scaler [int] Set by (12.4.5.2) slice_parameters

quant_matrix [{level: {orient: int, . . . }, . . . }] Set by (12.4.5.3) quant_matrix

quantizer [{level: {orient: int, . . . }, . . . }] Set by (13.5.5) slice_quantizers

11.8. vc2_conformance.pseudocode.state 139

SMPTE VC-2 Conformance Software, Release v1.0.1

y_transform [{level: {orient: [[int, . . .], . . .], . . . }, . . . }] Set by (13.5.6.3) slice_band. The
dequantised luma transform data read from the bitstream. A 2D array for each subband,
indexed as [level][orient][y][x].

c1_transform [{level: {orient: [[int, . . .], . . .], . . . }, . . . }] Set by (13.5.6.3) slice_band and
(13.5.6.4) color_diff_slice_band. The dequantised color difference 1 transform data
read from the bitstream. A 2D array for each subband, indexed as [level][orient][y][x].

c2_transform [{level: {orient: [[int, . . .], . . .], . . . }, . . . }] Set by (13.5.6.3) slice_band and
(13.5.6.4) color_diff_slice_band. The dequantised color difference 2 transform data
read from the bitstream. A 2D array for each subband, indexed as [level][orient][y][x].

fragment_data_length [int] Set by (14.2) fragment_header

fragment_slice_count [int] Set by (14.2) fragment_header

fragment_x_offset [int] Set by (14.2) fragment_header

fragment_y_offset [int] Set by (14.2) fragment_header

fragment_slices_received [int] Set by (14.4) fragment_data

fragmented_picture_done [int] Set by (14.4) fragment_data

current_picture [{‘pic_num’: int, ‘Y’: [[int, . . .], . . .], ‘C1’: [[int, . . .], . . .], ‘C2’: [[int,
. . .], . . .]}] Set by (15.2) picture_decode, contains the decoded picture.

next_bit [int] Set by (A.2.1) read_*

current_byte [int] Set by (A.2.1) read_*

bits_left [int] Bits left in the current bounded block (A.4.2)

_generic_sequence_matcher [vc2_conformance.symbol_re.Matcher
(page 124)] Not in spec, used by vc2_conformance.decoder (page 69).
A Matcher (page 124) which checks that the sequence follows the specified general
pattern of data units (10.4.1) (e.g. start with a sequence header, end with end of
sequence). Other matchers will test for, e.g. level-defined patterns.

_output_picture_callback [function({‘pic_num’: int, ‘Y’: [[int, . . .], . . .], ‘C1’:
[[int, . . .], . . .], ‘C2’: [[int, . . .], . . .]}, VideoParameters (page 142),
PictureCodingModes ([vc2_data_tables], page 4))] Not in spec, used by
vc2_conformance.decoder (page 69). A callback function to call when
output_picture (15.2) is called. This callback (if defined) will be passed the pic-
ture, video parameters and picture coding mode.

_num_pictures_in_sequence [int] Not in spec, used by vc2_conformance.
decoder (page 69). (10.4.3) and (12.2) A counter of how many pic-
tures have been encountered in the current sequence. Used to determine
if all fields have been received (when pictures are fields) and that the ear-
liest fields have an even picture number. Initialised in parse_sequence
(10.4.1) and incremented in vc2_conformance.decoder.assertions.
assert_picture_number_incremented_as_expected(), called in pic-
ture_header (12.2), and fragment_header (14.2).

_last_parse_info_offset [int] Not in spec, used by vc2_conformance.decoder
(page 69). (10.5.1) parse_info related state. The byte offset of the previously read
parse_info block.

_recorded_bytes [bytearray50] Not in spec, used by vc2_conformance.decoder
(page 69). (11.1) sequence_header requires that repeats must be byte-for-
byte identical. To facilitate this, the vc2_conformance.decoder.io.
record_bitstream_start() (page 71) and vc2_conformance.decoder.
io.record_bitstream_finish() (page 71) functions are used to make a
recording. When this entry is absent, read_byte works as usual. If it is a bytearray51,
whenever a byte has been completely read, it will be placed into this array.

140 Chapter 11. vc2_conformance.pseudocode: VC-2 pseudocode function implementations

https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytearray

SMPTE VC-2 Conformance Software, Release v1.0.1

_last_sequence_header_bytes [bytearray52] Not in spec, used by
vc2_conformance.decoder (page 69). (11.1) the bitstream bytes of the
data which encoded the previous sequence_header in the sequence. Not present if no
previous sequence_header has appeared.

_last_sequence_header_offset [int] Not in spec, used by vc2_conformance.
decoder (page 69). (11.1) the bitstream offset in bytes of the data which encoded the
previous sequence_header in the sequence. Not present if no previous sequence_header
has appeared.

_expected_major_version [int] Not in spec, used by vc2_conformance.decoder
(page 69). Used to record the expected major_version (11.2.1) for this se-
quence according to the constraints listed in (11.2.2). This field is set by
log_version_lower_bound().

_last_picture_number_offset [(byte offset, next bit)] Not in spec, used by
vc2_conformance.decoder (page 69). (12.2) picture_header and (14.2)
fragment_header: The offset of the last picture number encountered in the sequence (or
absent if no pictures have yet been encountered).

_last_picture_number [int] Not in spec, used by vc2_conformance.decoder
(page 69). (12.2) picture_header and (14.2) fragment_header: The last picture num-
ber encountered in the sequence (or absent if no pictures have yet been encountered).

_picture_initial_fragment_offset [(byte offset, next bit)] Not in spec, used by
vc2_conformance.decoder (page 69). (14) The offset in the bitstream of the
last fragment with fragment_slice_count==0.

_fragment_slices_remaining [int] Not in spec, used by vc2_conformance.decoder
(page 69). (14) The number of fragment slices which remain to be received in the current
picture. Initialised to zero by parse_sequence (10.4.1), reset to the number of slices per
picture by initialize_fragment_state (14.3) and decremented whenever a slice is received
by fragment_data (14.4).

_file [file-like] The Python file-like object from which the bitstream will be read by
read_byte (A.2.1) .

_level_sequence_matcher [vc2_conformance.symbol_re.Matcher (page 124)]
Not in spec, used by vc2_conformance.decoder (page 69). A Matcher
(page 124) which checks that the sequence follows the pattern dictated by the current
level. Populated after the first (11.2.1) parse_parameters is encountered (and should
therefore be ignored until that point).

_level_constrained_values [{key: value, . . . }] Not in spec, used by
vc2_conformance.decoder (page 69). A dictionary which will be incrementally
populated with values read or computed from the bitstream which are constrained by
the level constraints table (see vc2_conformance.level_constraints.
LEVEL_CONSTRAINTS (page 119) and vc2_conformance.decoder.
assertions.assert_level_constraint()).

reset_state(state)
Reset a State (page 139) dictionary to only include values retained between sequences in a VC-2 stream.
Modifies the dictionary in place.

50 https://docs.python.org/3/library/stdtypes.html#bytearray
51 https://docs.python.org/3/library/stdtypes.html#bytearray
52 https://docs.python.org/3/library/stdtypes.html#bytearray

11.8. vc2_conformance.pseudocode.state 141

https://docs.python.org/3/library/stdtypes.html#bytearray

SMPTE VC-2 Conformance Software, Release v1.0.1

11.9 vc2_conformance.pseudocode.vc2_math

Mathematical functions and operators defined in the spec (5.5.3)

intlog2_float(n)
(5.5.3) Implemented as described in the spec, requiring floating point arithmetic.

In practice, the alternative implementation in intlog2() (page 142) should be used instead since it does
not rely on floating point arithmetic (and is therefore faster and has unlimited precision).

intlog2(n)
(5.5.3) Implemented via pure integer, arbitrary-precision operations.

sign(a)
(5.5.3)

clip(a, b, t)
(5.5.3)

mean(*S)
(5.5.3)

11.10 vc2_conformance.pseudocode.video_parameters

Video parameter computation functions (11)

The functions in this module make up the purely functional (i.e. non bitstream-reading) logic for computing video
parameters. This predominantly consists of preset-loading and component dimension calculation routines.

For functions below which take a ‘state’ argument, this should be a dictionary-like object (e.g. State (page 139))
with the following entries:

• "frame_width"

• "frame_height"

• "luma_width"

• "luma_height"

• "color_diff_width"

• "color_diff_height"

• "luma_depth"

• "color_diff_depth"

• "picture_coding_mode"

fixeddict VideoParameters
(11.4) Video parameters struct.

Keys

frame_width [int] Set by (11.4.3) frame_size

frame_height [int] Set by (11.4.3) frame_size

color_diff_format_index [ColorDifferenceSamplingFormats
([vc2_data_tables], page 4)] Set by (11.4.4) color_diff_sampling_format

source_sampling [SourceSamplingModes ([vc2_data_tables], page 4)] Set by
(11.4.5) scan_format

top_field_first [bool] Set by (11.4.5) set_source_defaults

frame_rate_numer [int] Set by (11.4.6) frame_rate

142 Chapter 11. vc2_conformance.pseudocode: VC-2 pseudocode function implementations

SMPTE VC-2 Conformance Software, Release v1.0.1

frame_rate_denom [int] Set by (11.4.6) frame_rate

pixel_aspect_ratio_numer [int] Set by (11.4.7) aspect_ratio

pixel_aspect_ratio_denom [int] Set by (11.4.7) aspect_ratio

clean_width [int] Set by (11.4.8) clean_area

clean_height [int] Set by (11.4.8) clean_area

left_offset [int] Set by (11.4.8) clean_area

top_offset [int] Set by (11.4.8) clean_area

luma_offset [int] Set by (11.4.9) signal_range

luma_excursion [int] Set by (11.4.9) signal_range

color_diff_offset [int] Set by (11.4.9) signal_range

color_diff_excursion [int] Set by (11.4.9) signal_range

color_primaries_index [PresetColorPrimaries ([vc2_data_tables], page 5)] Set by
(11.4.10.2) color_primaries

color_matrix_index [PresetColorMatrices ([vc2_data_tables], page 5)] Set by
(11.4.10.3) color_matrix

transfer_function_index [PresetTransferFunctions ([vc2_data_tables], page 5)]
Set by (11.4.10.4) transfer_function

set_source_defaults(base_video_format)
(11.4.2) Create a VideoParameters (page 142) object with the parameters specified in a base video
format.

set_coding_parameters(state, video_parameters)
(11.6.1) Set picture coding mode parameter.

picture_dimensions(state, video_parameters)
(11.6.2) Compute the picture component dimensions in global state.

video_depth(state, video_parameters)
(11.6.3) Compute the bits-per-sample for the decoded video.

preset_frame_rate(video_parameters, index)
(11.4.6) Set frame rate from preset.

preset_pixel_aspect_ratio(video_parameters, index)
(11.4.7) Set pixel aspect ratio from preset.

preset_signal_range(video_parameters, index)
(11.4.7) Set signal range from preset.

preset_color_primaries(video_parameters, index)
(11.4.10.2) Set the color primaries parameter from a preset.

preset_color_matrix(video_parameters, index)
(11.4.10.3) Set the color matrix parameter from a preset.

preset_transfer_function(video_parameters, index)
(11.4.10.4) Set the transfer function parameter from a preset.

preset_color_spec(video_parameters, index)
(11.4.10.1) Load a preset color specification.

11.10. vc2_conformance.pseudocode.video_parameters 143

SMPTE VC-2 Conformance Software, Release v1.0.1

11.11 vc2_conformance.pseudocode.metadata

The vc2_conformance.pseudocode.metadata (page 144) module is used to record the relationship
between the functions in the vc2_conformance (page 59) software and the pseudocode functions in the VC-2
specification documents. This information has two main uses:

1. To produce more helpful error messages which include cross-references to published specifications.

2. To enable automatic verification that the behaviour of this software exactly matches the published specifi-
cations (see verification (page 147)).

11.11.1 Implementing pseudocode functions

Functions in the codebase which implement a pseudocode function in the specification must be labelled as such
using the ref_pseudocode() (page 144) decorator:

>>> from vc2_conformance.pseudocode.metadata import ref_pseudocode

>>> @ref_pseudocode
... def parse_info(state):
... '''(10.5.1) Read a parse_info header.'''
... byte_align()
... read_uint_lit(state, 4)
... state["parse_code"] = read_uint_lit(state, 1)
... state["next_parse_offset"] = read_uint_lit(state, 4)
... state["previous_parse_offset"] = read_uint_lit(state, 4)

The ref_pseudocode() (page 144) decorator will log the existence of the decorated function, along with the
reference to the spec at the start of its docstring.

By default, it is implied that a decorated function does not deviate from the pseudocode – a fact which is verified
by the verification (page 147) module in the test suite. When a function does deviate (for example for use
in serialisation/deserialisation) or is not defined in the spec, the deviation argument should be provided. This
is used by the verification (page 147) logic to determine how the function will be verified. See Pseudocode
deviations (page 147) for the allowed values. For example:

>>> @ref_pseudocode(deviation="serdes")
... def parse_parameters(serdes, state):
... '''(11.2.1)'''
... state["major_version"] = serdes.uint("major_version")
... state["minor_version"] = serdes.uint("minor_version")
... state["profile"] = serdes.uint("profile")
... state["level"] = serdes.uint("level")

ref_pseudocode(*args, **kwargs)
Decorator for marking functions which are derived from the VC-2 pseudocode.

Example usage:

@ref_pseudocode
def parse_info(state):

''''(10.5.1) Read a parse_info header.'''
...

@ref_pseudocode("10.5.1", deviation="alternative_implementation")
def parse_info(state):

'''Some alternative implementation of parse info.'''

Parameters

144 Chapter 11. vc2_conformance.pseudocode: VC-2 pseudocode function implementations

SMPTE VC-2 Conformance Software, Release v1.0.1

deviation [str or None] If this function deviates from the pseudocode in any way, indi-
cates the nature of this deviation. None indicates that this function exactly matches the
pseudocode.

Automatic checks for pseudocode equivalence in the test suite (see verification
(page 147)) will use this value to determine how exactly this function must match the
pseudocode for tests to pass. See Pseudocode deviations (page 147) for details of values
this field may hold.

document, section [str or None] The name of the document and section defining this func-
tion. If None, will be extracted from the function docstring. Defaults to the main VC-2
specification. If not provided, and not found in the docstring, a TypeError53 will be
thrown.

When extracted from a docstring, a reference of one of the following forms must be
used at the start of the docstring:

• (1.2.3): Reference a section in the main VC-2 spec

• (SMPTE ST 20402-2:2017: 1.2.3): Reference a section in another spec

name [str or None] The name of the pseudocode function this function implements. If
None, the provided function’s name will be used.

11.11.2 Accessing the metadata

After all submodules of vc2_conformance (page 59) have been loaded, the
pseudocode_derived_functions (page 146) list will be populated with
PseudocodeDerivedFunction (page 145) instances for every pseudocode derived function annotated with
ref_pseudocode() (page 144).

class PseudocodeDerivedFunction(function, deviation=None, document=None, sec-
tion=None, name=None)

A record of a pseudocode-derived function within this codebase.

Parameters

function [function] The Python function which was derived from a pseudocode function.

deviation [str or None] If this function deviates from the pseudocode in any way, indi-
cates the nature of this deviation. None indicates that this function exactly matches the
pseudocode.

Automatic checks for pseudocode equivalence in the test suite (see verification
(page 147)) will use this value to determine how exactly this function must match the
pseudocode for tests to pass. See Pseudocode deviations (page 147) for details of values
this field may hold.

document, section [str or None] The name of the document and section defining this func-
tion. If None, will be extracted from the function docstring. Defaults to the main VC-2
specification. If not provided, and not found in the docstring, a TypeError54 will be
thrown.

When extracted from a docstring, a reference of one of the following forms must be
used at the start of the docstring:

• (1.2.3): Reference a section in the main VC-2 spec

• (SMPTE ST 20402-2:2017: 1.2.3): Reference a section in another spec

name [str or None] The name of the pseudocode function this function implements. If
None, the provided function’s name will be used.

53 https://docs.python.org/3/library/exceptions.html#TypeError

11.11. vc2_conformance.pseudocode.metadata 145

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError

SMPTE VC-2 Conformance Software, Release v1.0.1

property citation
A human-readable citation string for this pseudocode function.

pseudocode_derived_functions = [PseudocodeDerivedFunction, ...]
The complete set of PseudocodeDerivedFunctions (page 145) in this code base, in no particular
order.

Warning: This array is only completely populated once every module of vc2_conformance
(page 59) has been loaded.

11.11.3 Pseudocode tracebacks

The make_pseudocode_traceback() (page 146) function may be used to convert a Python traceback into
a pseudocode function traceback.

make_pseudocode_traceback(tb)
Given a traceback.extract_tb()55 generated traceback description, return a list of
PseudocodeDerivedFunction (page 145) objects for the stack trace, most recently called
last. Entries in the traceback which don’t have a corresponding pseudocode-derived function are omitted.

54 https://docs.python.org/3/library/exceptions.html#TypeError
55 https://docs.python.org/3/library/traceback.html#traceback.extract_tb

146 Chapter 11. vc2_conformance.pseudocode: VC-2 pseudocode function implementations

https://docs.python.org/3/library/traceback.html#traceback.extract_tb

CHAPTER

TWELVE

AUTOMATED STATIC CODE VERIFICATION

The tests/verification (page 147) module (and embedded tests) implement automatic checks that the
code in vc2_conformance (page 59) matches the pseudocode definitions in the VC-2 specification.

The tests/verification/test_equivalence.py test script (which is part of the normal
Pytest test suite) automatically finds functions in the vc2_conformance (page 59) codebase (us-
ing vc2_conformance.pseudocode.metadata (page 144)) and checks they match the equiva-
lent function in the VC-2 specification (which are copied out verbatim in tests/verification/
reference_pseudocode.py).

Note: To ensure that vc2_conformance.pseudocode.metadata (page 144) contains information about
all submodules of vc2_conformance (page 59), the conftest.py file in this directory ensures all submod-
ules of vc2_conformance are loaded.

12.1 Pseudocode deviations

In some cases, a limited set of well-defined differences are allowed to exist between the specification and the
code used in vc2_conformance (page 59). For example, docstrings need not match and in some cases, extra
changes may be allowed to facilitate, e.g. bitstream deserialisation. The specific comparator used depends on the
deviation parameter given in the metadata as follows:

• deviation=None: verification.comparators.Identical (page 151)

• deviation="serdes": verification.comparators.SerdesChangesOnly (page 151)

Functions marked with the following additional deviation values will not undergo automatic verification, but
are used to indicate other kinds of pseudocode derived function:

• deviation="alternative_implementation": An alternative, orthogonal implementation in-
tended to perform the same role as an existing pseudocode function.

• deviation="inferred_implementation": A function whose existence is implied or whose be-
haviour is explained in prose and therefore has no corresponding pseudocode definition.

12.2 Amendment comments

In some cases it is necessary for an implementation to differ arbitrarily from the standard (i.e. to make ‘amend-
ments’). For example, additional type checks may be added or picture decoding functions disabled when not
required. Such amendments must be marked by special ‘amendment comments’ which start with either two or
three # characters, as shown by the snippet below:

def example_function(a, b):
The following lines are not part of the standard and so are marked by
an amendment comment to avoid the pseudocode equivalence checking

(continues on next page)

147

SMPTE VC-2 Conformance Software, Release v1.0.1

(continued from previous page)

logic complaining about them
Begin not in spec
if b <= 0:

raise Exception("'b' cannot be zero or negative!")
End not in spec

For single-line snippets which are not in the standard you can use
the following end-of-line amendment comment
assert b > 0 ## Not in spec

The following code is part of the standard but is disabled in this
example. Even though it is commented out, it will still be checked
against the standard. If the standard changes this check ensures that
the maintainer must revisit the commented-out code and re-evaluate
the suitability of any amendments made.
if do_something(a):
do_something_else(b)

return a / b

More details of the amendment comment syntax can be found in verification.amendment_comments
(page 152).

12.3 Internals

This module does not attempt to perform general purpose functional equivalence checking – a known uncom-
putable problem. Instead, comparisons are made at the Abstract Syntax Tree (AST) level. By performing checks
at this level semantically insignificant differences (e.g. whitespace and comments) are ignored while all other
changes are robustly identified. The Python built-in ast56 module is used to produce ASTs ensuring complete
support for all Python language features.

To compare ASTs, this module provides the verification.node_comparator.NodeComparator
(page 149). Instances of this class can be used to compare pairs of ASTs and report differences between them.

The subclasses in verification.comparators (page 151) are similar but allow certain well-defined dif-
ferences to exist between ASTs. As an example, verification.comparators.SerdesChangesOnly
(page 151) will allow calls to the read_* functions to be swapped for their equivalent vc2_conformance.
bitstream.serdes.SerDes (page 98) method calls with otherwise identical arguments.

To allow differences between function implementations and the specification, functions are pre-processed ac-
cording to the amendment comment syntax described above. This preprocessing step is implemented in
verification.amendment_comments (page 152) and uses the built-in Python tokenize57 module to
ensure correct interoperability with all other Python language features.

Finally the verification.compare (page 154) module provides the compare_functions() (page 154)
function which ties all of the above components together and produces human-readable reports of differences
between functions.

All of the above functionality is tested by the other test_*.py test scripts in this module’s directory.

56 https://docs.python.org/3/library/ast.html#module-ast
57 https://docs.python.org/3/library/tokenize.html#module-tokenize

148 Chapter 12. Automated Static Code Verification

https://docs.python.org/3/library/ast.html#module-ast
https://docs.python.org/3/library/tokenize.html#module-tokenize

SMPTE VC-2 Conformance Software, Release v1.0.1

12.3.1 verification.node_comparator: AST Comparison Framework

The NodeComparator (page 149) class is intended to form the basis of comparison routines which allow
controlled differences between two ASTs to be ignored.

For exapmle, the following can be used to compare two ASTs, ignoring docstrings at the start of functions:

from itertools import dropwhile

from verification.node_comparator import NodeComparator

class SameExceptDocstrings(NodeComparator):

def compare_FunctionDef(self, n1, n2):
def without_docstrings(body):

return dropwhile(
lambda e: isinstance(e, ast.Expr) and isinstance(e.value, ast.Str),
body,

)

return self.generic_compare(
n1, n2, filter_fields={"body": without_docstrings}

)

This can then be used like so:

>>> func_1 = "def func(a, b):\n '''Add a and b'''\n return a + b"
>>> func_2 = "def func(a, b):\n return a + b"

>>> import ast
>>> c = SameExceptDocstrings()
>>> c.compare(ast.parse(func_1), ast.parse(func_2))
True

NodeComparator API

class NodeComparator
An ast.AST58 visitor object (similar to ast.NodeVisitor59 which simultaneously walks two ASTs,
testing them for equivalence.

The compare() (page 149) method of instances of this class may be used to recursively compare two
AST nodes.

get_row_col()
Find the current row and column offsets for the tokens currently being compared with compare()
(page 149).

compare(n1, n2)
Recursively compare two AST nodes.

If n1 has the type named N1Type and n2 has the type named N2Type, this function will try to call
one of the following methods:

• compare_N1Type (if N1Type is the same as N2Type)

• compare_N1Type_N2_type

• compare_N1Type_ANY

• compare_ANY_N2Type

• generic_compare

12.3. Internals 149

https://docs.python.org/3/library/ast.html#ast.AST
https://docs.python.org/3/library/ast.html#ast.NodeVisitor

SMPTE VC-2 Conformance Software, Release v1.0.1

The first method to be found will be called and its return value returned. The various compare_*
methods may be overridden by subclasses of NodeComparator (page 149) and should implement
the same interface as this method.

Parameters

n1, n2 [ast.AST60] The nodes to compare

Returns

result [True or NodesDiffer (page 150)] True if the ASTs are equal and
NodesDiffer (page 150) (which is faslsey) otherwise.

generic_compare(n1, n2, ignore_fields=[], filter_fields={})
Base implementation of recurisive comparison of two AST nodes.

Compare the type of AST node and recursively compares field values. Recursion is via calls to
compare() (page 149).

Options are provided for ignoring differences in certain fields of the passed AST nodes.
Authors of custom compare_* methods may wish to use these arguments when calling
generic_compare() (page 150) to allow certain fields to differ while still reporting equality.

Parameters

n1, n2 [ast.AST61] The nodes to compare

ignore_fields [[str, . . .]] A list of field names to ignore while comparing the AST nodes.

filter_fields [{fieldname: fn or (fn, fn) . . . }] When a list-containing field is encountered,
functions may be provided for pre-filtering the entries of the lists being compared.
For example, one might supply a filtering function which removes docstrings from
function bodies.

Entries in this dictionary may be either:

• Functions which take the list of values and should return a new list of values to use
in the comparison. This function must not mutate the list passed to it.

• A pair of functions like the one above but the first will be used for filtering n1’s field
and the second for n2’s field. Either may be None if no filtering is to take place for
one of the nodes.

Returns

result [True or NodesDiffer (page 150)] True if the ASTs are equal and
NodesDiffer (page 150) (which is faslsey) otherwise.

NodesDiffer types

class NodesDiffer(n1, n1_row_col, n2, n2_row_col, reason=None)
A result from NodeComparator (page 149) indicating that two ASTs differ.

This object is ‘falsy’ (i.e. calling bool() on a NodeComparator (page 149) instance returns False).

Attributes

n1, n2 [ast.AST62] The two ASTs being compared.

n1_row_col, n2_row_col [(row, col) or (None, None)] The row and column of the ‘n1’ and
‘n2’ tokens, or the values for the row and column of the nearest token with a known
position.

58 https://docs.python.org/3/library/ast.html#ast.AST
59 https://docs.python.org/3/library/ast.html#ast.NodeVisitor
60 https://docs.python.org/3/library/ast.html#ast.AST
61 https://docs.python.org/3/library/ast.html#ast.AST

150 Chapter 12. Automated Static Code Verification

https://docs.python.org/3/library/ast.html#ast.AST
https://docs.python.org/3/library/ast.html#ast.AST
https://docs.python.org/3/library/ast.html#ast.AST

SMPTE VC-2 Conformance Software, Release v1.0.1

reason [str or None] A string describing how the two nodes differ with a human-readable
message.

class NodeTypesDiffer(n1, n1_row_col, n2, n2_row_col)
A pair of nodes have different types.

class NodeFieldsDiffer(n1, n1_row_col, n2, n2_row_col, field)
A pair of nodes differ in the value of a particular field.

Attributes

field [str] The field name where the AST nodes differ.

class NodeFieldLengthsDiffer(n1, n1_row_col, n2, n2_row_col, field, v1, v2)
A pair of nodes differ in the length of the list of values in a particular field.

Attributes

field [str] The field name where the AST nodes differ.

v1, v2 [list] The values of the fields (after any filtering has taken place).

class NodeListFieldsDiffer(n1, n1_row_col, n2, n2_row_col, field, index, v1, v2)
A pair of nodes differ in the value of a list field entry.

Attributes

field [str] The field name where the AST nodes differ.

index [int] The index of the value in the v1 and v2 lists.

v1, v2 [list] The values of the fields (after any filtering has taken place).

12.3.2 verification.comparators

A series of verification.node_comparator.NodeComparator (page 149) based comparators for
checking the equivalence of VC-2 pseudocode functions from the spec with their implementations in the
vc2_conformance (page 59) package.

class Identical
Bases: verification.node_comparator.NodeComparator (page 149)

Compares two function implementations only allowing the following differences:

1. Their docstrings may be different.

2. A vc2_conformance.pseudocode.metadata.ref_pseudocode() (page 144) decorator
may be used.

3. Constants from the vc2_data_tables ([vc2_data_tables], page 3) module may be used in place
of their numerical literal equivalents.

class SerdesChangesOnly
Bases: verification.node_comparator.NodeComparator (page 149)

Compares two function implementations where the first is a VC-2 pseudocode definition and the second
is a function for use with the vc2_conformance.bitstream.serdes (page 93) framework. The
following differences are allowed:

1. Differing docstrings. (Justification: has no effect on behaviour.)

2. The addition of a vc2_conformance.pseudocode.metadata.ref_pseudocode()
(page 144) decorator to the second function. (Justification: has no effect on behaviour.)

3. The addition of a vc2_conformance.bitstream.serdes.context_type() (page 103)
decorator to the second function. (Justification: has no effect on behaviour.)

62 https://docs.python.org/3/library/ast.html#ast.AST

12.3. Internals 151

SMPTE VC-2 Conformance Software, Release v1.0.1

4. The addition of serdes as a first argument to the second function. (Justification: required for use of
the serdes framework, has no effect on behaviour.)

5. The wrapping of statements in with serdes.subcontext context managers in the second func-
tion will be ignored. (Justification: these context managers have no effect on behaviour but are required
to set the serdes state.)

6. The addition of the following methods calls in the second function (Justification: these method calls
have no effect on behaviour but are required to set the serdes state):

• vc2_conformance.bitstream.serdes.SerDes.subcontext_enter()
(page 101)

• vc2_conformance.bitstream.serdes.SerDes.subcontext_leave()
(page 101)

• vc2_conformance.bitstream.serdes.SerDes.set_context_type()
(page 100)

• vc2_conformance.bitstream.serdes.SerDes.declare_list() (page 100)

• vc2_conformance.bitstream.serdes.SerDes.computed_value() (page 101)

7. The substitution of an assignment to state.bits_left with a call to vc2_conformance.
bitstream.serdes.SerDes.bounded_block_begin() (page 100) in the second function,
taking the assigned value as argument. (Justification: this has the equivalent effect in the bitstream I/O
system).

8. The following I/O function substitutions in the second function are allowed with an additional first ar-
gument (for the target name). (Justification: these functions have the equivalent effect in the bitstream
I/O system).

• read_bool -> serdes.bool

• read_nbits -> serdes.nbits

• read_uint_lit -> serdes.uint_lit or serdes.bytes

• read_uint or read_uintb -> serdes.uint

• read_sint or read_sintb -> serdes.sint

• byte_align -> serdes.byte_align

• flush_inputb -> serdes.bounded_block_end

9. Substitution of empty dictionary creation for creation of vc2_conformance.pseudocode.
state.State (page 139) or vc2_conformance.pseudocode.video_parameters.
VideoParameters (page 142) fixed dicts is allowed. (Justification: These are valid dictionary
types, but provide better type checking and pretty printing which is valuable here).

12.3.3 verification.amendment_comments

In the vc2_conformance (page 59) module it is sometimes necessary to make amendments to the pseudocode.
For example, validity checks may be added or unneeded steps removed (such as performing a wavelet transform
while simply deserialising a bitstream).

To make changes made to a VC-2 function implementations explicit, the following conventions are used:

• When code present in the spec is removed or disabled, it is commented out using triple-hash comments like
so:

def example_1(a, b):
Code as-per the VC-2 spec
c = a + b

(continues on next page)

152 Chapter 12. Automated Static Code Verification

SMPTE VC-2 Conformance Software, Release v1.0.1

(continued from previous page)

No need to actually perform wavelet transform
if c > 1:
wavelet_transform()
display_picture()

More code per the spec
return c

• When code is added, it should be indicated using either a ## Not in spec double-hash comment:

def example_2(a, b):
assert b > 0 ## Not in spec

return a / b

Or within a ## Begin not in spec, ## End not in spec block:

def example_2(a, b):
Begin not in spec
if b < 0:

raise Exception("Negative 'b' not allowed")
elif b == 0:

raise Exception("Can't divide by 'b' when it is 0")
End not in spec

return a / b

To enable the automated verification that implemented functions match the VC-2 spec (e.g. using
verification.comparators (page 151)), any amendments to the code must first be undone. The
undo_amendments() (page 153) function may be used to performs this step.

undo_amendments(source)
Given a Python source snippet, undo all amendments marked by special ‘amendment comments’ (comments
starting with ## and ###).

The following actions will be taken:

• Disabled code prefixed ### ... (three hashes and a space) will be uncommented.

• Lines ending with a ## Not in spec comment will be commented out.

• Blocks of code starting with a ## Begin not in spec line and ending with a ## End not
in spec line will be commented out.

Returns

(source, indent_corrections) The modified source is returned along with a dictionary map-
ping line number to an indentation correction. These corrections may be used to map
column numbers in the new source to column numbers in the old source.

Raises

tokenize.TokenError63

BadAmendmentCommentError (page 153)

UnmatchedNotInSpecBlockError (page 154)

UnclosedNotInSpecBlockError (page 154)

The following exception custom exception types are defined:

63 https://docs.python.org/3/library/tokenize.html#tokenize.TokenError

12.3. Internals 153

https://docs.python.org/3/library/tokenize.html#tokenize.TokenError

SMPTE VC-2 Conformance Software, Release v1.0.1

exception BadAmendmentCommentError(comment, row, col)
An unrecognised amendment comment (a comment with two or more hashes) was found.

Attributes

comment [str] The contents of the comment

row, col [int] The position in the source where the unrecognised comment starts

exception UnmatchedNotInSpecBlockError(row)
An ‘End not in spec’ amendment comment block was encountered without a corresponding ‘Begin not in
spec’ block.

Attributes

row [int] The line in the source where the ‘end’ comment was encounterd

exception UnclosedNotInSpecBlockError(row)
A ‘Begin not in spec’ amendment comment block was not closed.

Attributes

row [int] The line in the source where the block was started.

12.3.4 verification.compare: Compare function implementations

This module provides a function, compare_functions() (page 154), which uses a specified comparator
(verification.comparators (page 151)) to determine if a given function matches the reference VC-2
pseudocode.

compare_functions(ref_func, imp_func, comparator)
Compare two Python functions where one is a reference implementation and the other an implementation
used in vc2_conformance (page 59).

Parameters

ref_func [FunctionType] The reference VC-2 implementation of a function.

imp_func [FunctionType] The implementation of the same function used in
vc2_conformance (page 59). Will be pre-processed using verification.
amendment_comments.undo_amendments() (page 153) prior to comparison.

comparator [verification.node_comparator.NodeComparator (page 149)]
The comparator instance to use to test for equivalence.

Returns

True or Difference (page 155) True is returned if the implementations are equal (ac-
cording to the supplied comparator). Otherwise a Difference (page 155) is returned
enumerating the differences.

Raises

ComparisonError (page 155)

compare_sources(ref_source, imp_source, comparator)
Compare two Python sources, one containing a reference VC-2 pseudocode function and the other contain-
ing an implementation.

Parameters

ref_source [str] The reference VC-2 pseudocode implementation of a function.

imp_source [str] The implementation of the same function used in vc2_conformance
(page 59). Will be pre-processed using verification.amendment_comments.
undo_amendments() (page 153) prior to comparison.

comparator [verification.node_comparator.NodeComparator (page 149)]
The comparator instance to use to test for equivalence.

154 Chapter 12. Automated Static Code Verification

SMPTE VC-2 Conformance Software, Release v1.0.1

Returns

True or Difference (page 155) True is returned if the implementations are equal (ac-
cording to the supplied comparator). Otherwise a Difference (page 155) is returned
enumerating the differences.

Raises

ComparisonError (page 155)

class Difference(message, ref_row=None, ref_col=None, imp_row=None, imp_col=None,
ref_func=None, imp_func=None)

A description of the difference between a reference function and its implementation.

Use str64 to turn into a human-readable description (including source code snippets).

Parameters

message [str]

ref_row, ref_col [int or None] The position in the reference code where the difference
ocurred. May be None if not related to the reference code.

imp_row, imp_col [int or None] The position in the implementation code where the differ-
ence ocurred. May be None if not related to the implementation code.

ref_func, imp_func [FunctionType or None] The Python function objects being compared.

exception ComparisonError(message, ref_row=None, ref_col=None, imp_row=None,
imp_col=None, ref_func=None, imp_func=None)

An error occurred while attempting to compare two function implementations.

Use str65 to turn into a human-readable description (including source code snippets).

Parameters

message [str]

ref_row, ref_col [int or None] The position in the reference code where the error ocurred.
May be None if not related to the reference code.

imp_row, imp_col [int or None] The position in the implementation code where the error
ocurred. May be None if not related to the implementation code.

ref_func, imp_func [FunctionType or None] The Python function objects being compared.

64 https://docs.python.org/3/library/stdtypes.html#str
65 https://docs.python.org/3/library/stdtypes.html#str

12.3. Internals 155

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

SMPTE VC-2 Conformance Software, Release v1.0.1

156 Chapter 12. Automated Static Code Verification

CHAPTER

THIRTEEN

UTILITY MODULE REFERENCES

13.1 vc2_conformance.fixeddict: Fixed-key dictionaries

The vc2_conformance.fixeddict (page 157) module provides the fixeddict() (page 159) function
for creating new dict66 subclasses which permit only certain keys to be used. These new types may be used like
ordinary Python dictionaries but add three main features:

• Explicitness – The VC-2 pseudocode creates and uses many dictionaries (called ‘maps’ in the specification)
in place of struct-like objects. fixeddicts (page 157) provide a way to give these clear names.

• Avoidance of typos – Misspelt key names will result in a FixedDictKeyError (page 160).

• Better pretty printing – See more below. . .

13.1.1 Tutorial

Using fixeddict() (page 159), dictionary-like types with well defined fields can be described like so:

>>> from vc2_conformance.fixeddict import fixeddict

>>> FrameSize = fixeddict(
... "FrameSize",
... "custom_dimensions_flag",
... "frame_width",
... "frame_height",
...)

This produces a ‘dict’ subclass called FrameSize with all of the usual dictionary behaviour but which only
allows the specified keys to be used:

>>> f = FrameSize()
>>> f["custom_dimensions_flag"] = True
>>> f["frame_width"] = 1920
>>> f["frame_height"] = 1080

>>> f["frame_width"]
1920

>>> f["not_in_fixeddict"] = 123
Traceback (most recent call last):

...
FixedDictKeyError: 'not_in_fixeddict'

To improve readability when producing string representations of VC-2 data structures, the generated dictionary
types have a ‘pretty’ string representation.

66 https://docs.python.org/3/library/stdtypes.html#dict

157

https://docs.python.org/3/library/stdtypes.html#dict

SMPTE VC-2 Conformance Software, Release v1.0.1

>>> print(f)
FrameSize:

custom_dimensions_flag: True
frame_width: 1920
frame_height: 1080

To further improve the readability of this output, custom string formatting functions may be provided for each
entry in the dictionary. To define these, Entry (page 159) instances must be used in place of key name strings
like so:

>>> from vc2_conformance.string_formatters import Hex
>>> from vc2_data_tables import ParseCodes # An IntEnum
>>> ParseInfo = fixeddict(
... "ParseInfo",
... Entry("parse_info_prefix", formatter=Hex(8)),
... Entry("parse_code", enum=ParseCodes, formatter=Hex(2)),
... Entry("next_parse_offset"),
... Entry("previous_parse_offset"),

>>> pi = ParseInfo(
... parse_info_prefix=0x42424344,
... parse_code=0x10,
... next_parse_offset=0,
... previous_parse_offset=0,
...)
>>> str(pi)
ParseInfo:

parse_info_prefix: 0x42424344
parse_code: end_of_sequence (0x10)
next_parse_offset: 0
previous_parse_offset: 0

See the vc2_conformance.string_formatters (page 160) module for a set of useful string formatting
functions.

Finally, documentation can optionally be added in the form of help and help_type arguments which will
combined into the generated type’s docstring:

>>> ParseInfo = fixeddict(
... "ParseInfo",
... Entry("parse_info_prefix", formatter=Hex(8), help_type="int", help="Always
→˓0x42424344"),
... Entry("parse_code", enum=ParseCodes, formatter=Hex(2), help_type="int"),
... Entry("next_parse_offset", help_type="int"),
... Entry("previous_parse_offset", help_type="int"),
... help="A deserialised parse info block.",
...)

>>> print(ParseInfo.__doc__)
A deserialised parse info block.

Parameters
==========
parse_info_prefix : int

Always 0x42424344
parse_code : int
next_parse_offset : int
previous_parse_offset : int

158 Chapter 13. Utility module references

SMPTE VC-2 Conformance Software, Release v1.0.1

13.1.2 API

fixeddict(name, *entries, **kwargs)
Create a fixed-entry dictionary.

A fixed-entry dictionary is a dict67 subclass which permits only a preset list of key names.

The first argument is the name of the created class, the remaining arguments may be strings or Entry
(page 159) instances describing the allowed entries in the dictionary.

Example usage:

>>> ExampleDict = fixeddict(
... "ExampleDict",
... "attr",
... Entry("attr_with_default"),
...)

Instances of the dictionary can be created like an ordinary dictionary:

>>> d = ExampleDict(attr=10, attr_with_default=20)
>>> d["attr"]
10
>>> d["attr_with_default"]
20

The string format of generated dictionaries includes certain pretty-printing behaviour (see Entry
(page 159)) and will also omit any entries whose name is prefixed with an underscore (_).

The class itself will have a static (and read-only) attribute entry_objs which is a
:py;class:collections.OrderedDict mapping from entry name to Entry (page 159) object in the dic-
tionary.

The keyword-only argument, ‘module’ may be provided which overrides the __module__ value of the
returned fixeddict type. (By default the module name is inferred using runtime stack inspection, if possible).
This must be set correctly for this type to be picklable.

The keyword-only argument ‘help’ may be used to set the docstring of the returned class. This will auto-
matically be appended with the list of entries allowed (and their help strings).

class Entry(name, **kwargs)
Defines advanced properties of of an entry in a fixeddict() (page 159) dictionary.

All constructor arguments, except name, are keyword-only.

Parameters

name [str] The name of this entry in the dictionary.

formatter [function(value) -> string] A function which takes a value and returns a string
representation to use when printing this value as a string. Defaults to ‘str’.

friendly_formatter [function(value) -> string] If provided, when converting this value to
a string, this function will be used to generate a ‘friendly’ name for this value. This
will be followed by the actual value in brackets. If this function returns None, only the
actual value will be shown (without brackets).

enum [Enum68] A convenience interface which is equivalent to the following formatter
argument:

def enum_formatter(value):
try:

return str(MyEnum(value).value)
except ValueError:

return str(value)

67 https://docs.python.org/3/library/stdtypes.html#dict

13.1. vc2_conformance.fixeddict: Fixed-key dictionaries 159

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/enum.html#enum.Enum

SMPTE VC-2 Conformance Software, Release v1.0.1

And the following friendly_formatter argument:

def friendly_enum_formatter(value):
try:

return MyEnum(value).name
except ValueError:

return None

If formatter or friendly_formatter are provided in addition to enum, they
will override the functions implicitly defined by enum.

help [str] Optional documentation string.

help_type [str] Optional string describing the type of the entry.

exception FixedDictKeyError(key, fixeddict_class)
A KeyError69 which also includes information about which fixeddict dictionary it was produced by.

Attributes

key The key which was accessed.

fixeddict_class The fixeddict (page 157) type of the dictionary used.

13.2 vc2_conformance.string_formatters: Value-to-string
formatting utilities

The vc2_conformance.string_formatters (page 160) module contains facilities for formatting (or
pretty printing) Python values as strings.

When we say ‘string formatter’ we mean a function/callable which takes a value and returns a string representation
of that value. Instances of the classes in this module act as formatters. For example, the Hex (page 160) class may
be used as a formatter for n-digit hexadecimal integers:

>>> from vc2_conformance.string_formatters import Hex

>>> # Create a formatter for producing 8-digit hex numbers
>>> hex32_formatter = Hex(8)

>>> # Format some values
>>> hex32_formatter(0)
'0x00000000'
>>> hex32_formatter(0x1234)
'0x00001234'

class Number(format_code, num_digits=0, pad_digit='0', prefix='')
A formatter which uses Python’s built-in str.format()70 method to apply formatting.

This formatter is quite low level, see Hex (page 160), Dec (page 161), Oct (page 161) and Bin (page 161)
for ready to use derivatives.

Parameters

format_code [str] A python str.format()71 code, e.g. “b” for binary.

prefix [str] A prefix to add before the formatted number

num_digits [int] The length to pad the number to.

pad_digit [str] The value to use to pad absent digits

68 https://docs.python.org/3/library/enum.html#enum.Enum
69 https://docs.python.org/3/library/exceptions.html#KeyError
70 https://docs.python.org/3/library/stdtypes.html#str.format
71 https://docs.python.org/3/library/stdtypes.html#str.format

160 Chapter 13. Utility module references

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str.format
https://docs.python.org/3/library/stdtypes.html#str.format

SMPTE VC-2 Conformance Software, Release v1.0.1

class Hex(num_digits=0, pad_digit='0', prefix='0x')
Prints numbers in hexadecimal.

Parameters

num_digits [int] Minimum number of digits to show.

pad_digit [str] The value to use to pad absent digits

prefix [str] Defaults to “0x”

class Dec(num_digits=0, pad_digit='0', prefix='')
Prints numbers in decimal.

Parameters

num_digits [int] Minimum number of digits to show.

pad_digit [str] The value to use to pad absent digits

prefix [str] Defaults to “”

class Oct(num_digits=0, pad_digit='0', prefix='0o')
Prints numbers in octal.

Parameters

num_digits [int] Minimum number of digits to show.

pad_digit [str] The value to use to pad absent digits

prefix [str] Defaults to “0o”

class Bin(num_digits=0, pad_digit='0', prefix='0b')
Prints numbers in binary.

Parameters

num_digits [int] Minimum number of digits to show.

pad_digit [str] The value to use to pad absent digits

prefix [str] Defaults to “0b”

class Bool
A formatter for bool72 (or bool-castable) objects. For the values 0, 1, False and True, just shows ‘True’ or
‘False’. For all other values, shows also the true value in brackets.

For example:

>>> bool_formatter = Bool()
>>> bool_formatter(False)
"False"
>>> bool_formatter(True)
"True"
>>> bool_formatter(0)
"False"
>>> bool_formatter(1)
"True"
>>> bool_formatter(123)
"True (123)"
>>> bool_formatter(None)
"True (None)"

class Bits(prefix='0b', context=4, min_length=8, show_length=16)
A formatter for bitarray.bitarray objects. Shows the value as a string of the form ‘0b0101’, using
ellipsise() (page 163) to shorten very long, values.

Parameters
72 https://docs.python.org/3/library/functions.html#bool

13.2. vc2_conformance.string_formatters: Value-to-string formatting utilities 161

https://docs.python.org/3/library/functions.html#bool

SMPTE VC-2 Conformance Software, Release v1.0.1

prefix [str] A prefix to add to the string

context [int]

min_length [int] See ellipsise() (page 163).

show_length [int or bool] If an integer, show the length of the bitarray in brackets if above
the specified length (in bits). If a bool, force display (or hiding) of the length informa-
tion.

class Bytes(prefix='0x', separator='_', context=2, min_length=4, show_length=8)
A formatter for bytes73 strings. Shows the value as a string of the form ‘0xAB_CD_EF’, using
ellipsise() (page 163) to shorten very long, values.

Parameters

prefix [str] A prefix to add to the string

separator [str] A string to place between each pair of hex digits.

context [int]

min_length [int] See ellipsise() (page 163).

show_length [int or bool] If an integer, show the length of the bitarray in brackets if above
the specified length (in bytes). If a bool, force display (or hiding) of the length informa-
tion.

class Object(prefix='<', suffix='>')
A formatter for opaque python Objects. Shows only the object type name.

class List(min_run_length=3, formatter=<class 'str'>)
A formatter for lists which collapses repeated entries.

Examples:

>>> # Use Python-style notation for repeated entries
>>> List()([1, 1, 1, 1])
[1]*4

>>> # Also displays lists with some non-repeated values
>>> List()([1, 2, 3, 0, 0, 0, 0, 0, 4, 5])
[1, 2, 3] + [0]*5 + [4, 5]

>>> # A custom formatter may be supplied for formatting the list
>>> # entries
>>> List(formatter=Hex())([1, 2, 3, 0, 0, 0])
[0x1, 0x2, 0x3] + [0x0]*3

>>> # Equality is based on the string formatted value, not the raw
>>> # value
>>> List(formatter=Object())([1, 2, 3, 0, 0, 0])
[<int>]*6

>>> # The minimum run-length before truncation may be overridden
>>> List(min_run_length=3)([1, 2, 2, 3, 3, 3])
[1, 2, 2] + [3]*3

class MultilineList(heading=None, formatter=<class 'str'>)
A formatter for lists which displays each value on its own line.

Examples:

>>> MultilineList()(["one", "two", "three"])
0: one

(continues on next page)

73 https://docs.python.org/3/library/stdtypes.html#bytes

162 Chapter 13. Utility module references

https://docs.python.org/3/library/stdtypes.html#bytes

SMPTE VC-2 Conformance Software, Release v1.0.1

(continued from previous page)

1: two
2: three

>>> # A custom formatter may be supplied for formatting the list
>>> # entries
>>> MultilineList(formatter=Hex())([1, 2, 3])
0: 0x1
1: 0x2
2: 0x3

>>> # A heading may be added
>>> MultilineList(heading="MyList")(["one", "two", "three"])
MyList
0: one
1: two
2: three

13.3 vc2_conformance.string_utils: String formatting utili-
ties

The vc2_conformance.string_utils (page 163) module contains a selection of general purpose string
formatting routines.

indent(text, prefix=' ')
Indent the string ‘text’ with the prefix string ‘prefix’.

Note: This function is provided partly because Python 2.x doesn’t include textwrap.indent()74 in
its standard library and partly to provide an indent function with sensible defaults (i.e. 2 character indent,
and always indent every line).

ellipsise(text, context=4, min_length=8)
Given a string which contains very long sequences of the same character (e.g. long mostly constant binary
or hex numbers), produce an ‘ellipsised’ version with some of the repeated characters replaced with ‘. . . ’.

Exactly one shortening operation will be carried out (on the longest run) meaning that so long as the original
string length is known, no ambiguity is introduced in the ellipsised version.

For example:

>>> ellipsise("0b10100000000000000000000000000000000000001")
"0b1010000...00001"

Parameters

text [str] String to ellipsise.

context [int] The number of repeated characters to retain before and after the ellipses.

min_length [int] The minimum number of characters to bother replacing with ‘. . . ’. This
means that no change will be made until 2*context + min_length character repetitions.

ellipsise_lossy(text, max_length=80)
Given a string which may not fit within a given line length, trnucate the string by adding ellipses in the
middle.

74 https://docs.python.org/3/library/textwrap.html#textwrap.indent

13.3. vc2_conformance.string_utils: String formatting utilities 163

https://docs.python.org/3/library/textwrap.html#textwrap.indent

SMPTE VC-2 Conformance Software, Release v1.0.1

split_into_line_wrap_blocks(text, wrap_indented_blocks=False)
Deindent and split a multi-line markdown-style string into blocks of text which can be line-wrapped inde-
pendently.

For example given a markdown-style string defined like so:

'''
A markdown style title
======================

This is a string with some initial indentation
and also some hard line-wraps inserted too. This
paragraph ought to be line-wrapped as an
independent unit.

Here's a second paragraph which also ought to be
line wrapped as its own unit.

* This is a bulleted list

* Each bullet point should be line wrapped as an
individual unit (with the wrapping indented
as shown here).

* Notice that bullets don't have a newline
between them like paragraphs do.

1. Numbered lists are also supported.
2. Here long lines will be line wrapped in much

the same way as a bulleted list.

Finally:

An intended block will also remain indented.
However, if wrap_indented_blocks is False, the
existing linebreaks will be retained (e.g. for
markdown-style code blocks). If set to True,
the indented block will be line-wrapped.

'''

This will be split into independently line wrappable segments (as described).

Returns

blocks [[(first_indent, rest_indent, text), . . .]] A series of wrappable blocks. In each tuple:

• first_indent contains a string which should be used to indent the first line of the
wrapped block.

• rest_indent should be a string which should be used to indent all subsequent lines in
the wrapped block. This will be the same length as first_indent.

• text will be an indentation and newline-free string

An empty block (i.e. ("", "", "")) will be included between each paragraph in the
input so that the output maintains the same vertical whitespace profile.

wrap_blocks(blocks, width=None, wrap_indented_blocks=False)
Return a line-wrapped version of a series of text blocks as produced by
split_into_line_wrap_blocks() (page 163).

Expects a list of (first_line_indent, remaining_line_indent, text) tuples to output.

If ‘width’ is None, assumes an infinite line width.

If ‘wrap_indented_blocks’ is False (the default) indented (markdown-style) code blocks will not be line
wrapped while other indented blocks (e.g. bullets) will be.

164 Chapter 13. Utility module references

SMPTE VC-2 Conformance Software, Release v1.0.1

wrap_paragraphs(text, width=None, wrap_indented_blocks=False)
Re-line-wrap a markdown-style string with hard-line-wrapped paragraphs, bullet points, numbered lists and
code blocks (see split_into_line_wrap_blocks() (page 163)).

If ‘width’ is None, assumes an infinite line width.

If ‘wrap_indented_blocks’ is False (the default) indented (markdown-style) code blocks will not be line
wrapped while other indented blocks (e.g. bullets) will be.

13.4 vc2_conformance.py2x_compat: Python 3.x backports

The vc2_conformance.py2x_compat (page 165) module provides backported implementations of various
functions from Python 3 which are used by this software.

zip_longest()
In Python 3.x an alias for itertools.zip_longest()75, in Python 2.x, an alias for itertools.
izip_longest.

get_terminal_size()
In Python 3.x an alias for shutil.get_terminal_size()76, in Python 2.x, a dummy function always
returning (80, 20).

wraps()
In Python 3.x an alias for functools.wraps()77. In Python 2.x, an alternative implementation of
functools.wraps which includes the Python 3.x behaviour of setting the __wrapped__ attribute to
allow introspection of wrapped functions (see unwrap() (page 165)).

unwrap()
In Python 3.x an alias for inspect.unwrap()78. In Python 2.x a backported implementation of that
function. Relies on the backported wraps() (page 165) implementation provided by this module.

quote()
In Python 3.x an alias for shlex.quote()79, in Python 2.x, an alias for pipes.quote.

string_types
A tuple enumerating the native string-like types. In Python 3.x, (str,), in Python 2.x, (str,
unicode).

gcd()
In Python 3.x an alias for math.gcd()80, in Python 2.x, an alias for fractions.gcd.

zip()
In Python 3.x an alias for zip() (page 165), in Python 2.x, an alias for itertools.izip.

makedirs()
In Python 3.x an alias for os.makedirs()81. In Python 2.x, a backport of this function which includes
the exist_ok argument.

FileType()
In Python 3.x an alias for argparse.FileType82. In Python 2.x, a wrapper around argparse.
FileType83 adding support for the ‘encoding’ keyword argument when opening with mode “r”.

75 https://docs.python.org/3/library/itertools.html#itertools.zip_longest
76 https://docs.python.org/3/library/shutil.html#shutil.get_terminal_size
77 https://docs.python.org/3/library/functools.html#functools.wraps
78 https://docs.python.org/3/library/inspect.html#inspect.unwrap
79 https://docs.python.org/3/library/shlex.html#shlex.quote
80 https://docs.python.org/3/library/math.html#math.gcd
81 https://docs.python.org/3/library/os.html#os.makedirs
82 https://docs.python.org/3/library/argparse.html#argparse.FileType
83 https://docs.python.org/3/library/argparse.html#argparse.FileType

13.4. vc2_conformance.py2x_compat: Python 3.x backports 165

https://docs.python.org/3/library/itertools.html#itertools.zip_longest
https://docs.python.org/3/library/shutil.html#shutil.get_terminal_size
https://docs.python.org/3/library/functools.html#functools.wraps
https://docs.python.org/3/library/inspect.html#inspect.unwrap
https://docs.python.org/3/library/shlex.html#shlex.quote
https://docs.python.org/3/library/math.html#math.gcd
https://docs.python.org/3/library/os.html#os.makedirs
https://docs.python.org/3/library/argparse.html#argparse.FileType
https://docs.python.org/3/library/argparse.html#argparse.FileType
https://docs.python.org/3/library/argparse.html#argparse.FileType

SMPTE VC-2 Conformance Software, Release v1.0.1

166 Chapter 13. Utility module references

BIBLIOGRAPHY

[vc2_data_tables] The vc2_data_tables84 manual.

[vc2_bit_widths] The vc2_bit_widths85 manual.

[vc2_conformance_data] The vc2_conformance_data86 manual.

84 https://github.com/bbc/vc2_data_tables/
85 https://github.com/bbc/vc2_bit_widths/
86 https://github.com/bbc/vc2_conformance_data/

167

https://github.com/bbc/vc2_data_tables/
https://github.com/bbc/vc2_bit_widths/
https://github.com/bbc/vc2_conformance_data/

SMPTE VC-2 Conformance Software, Release v1.0.1

168 Bibliography

INDEX

Symbols
__add__() (ValueSet method), 130
__contains__() (ValueSet method), 129
__eq__() (ValueSet method), 130
__init__() (ValueSet method), 129
__iter__() (ValueSet method), 130
__str__() (ValueSet method), 130

A
add_range() (ValueSet method), 129
add_transition() (NFANode method), 127
add_value() (ValueSet method), 129
allowed_values_for() (in module

vc2_conformance.constraint_table), 131
ANALYSIS_LIFTING_FUNCTION_TYPES (in module

vc2_conformance.pseudocode.picture_encoding), 137
AnyValue (class in vc2_conformance.constraint_table), 130
AUTO (in module vc2_conformance.bitstream.vc2_autofill), 108
autofill_and_serialise_stream() (in module

vc2_conformance.bitstream.vc2_autofill), 107
autofill_major_version() (in module

vc2_conformance.bitstream.vc2_autofill), 107
autofill_parse_offsets() (in module

vc2_conformance.bitstream.vc2_autofill), 107
autofill_parse_offsets_finalize() (in module

vc2_conformance.bitstream.vc2_autofill), 108
autofill_picture_number() (in module

vc2_conformance.bitstream.vc2_autofill), 107
AuxiliaryData (fixeddict in vc2_conformance.bitstream), 92

B
BadAmendmentCommentError, 153
Bin (class in vc2_conformance.string_formatters), 161
bitarray() (SerDes method), 99
Bits (class in vc2_conformance.string_formatters), 161
bits_remaining() (BitstreamReader property), 104
bits_remaining() (BitstreamWriter property), 105
bitstream_viewer_hint() (ConformanceError method), 72
BitstreamReader (class in vc2_conformance.bitstream.io), 103
BitstreamWriter (class in vc2_conformance.bitstream.io), 104
black_sane() (ColorParametersSanity property), 116
blue_sane() (ColorParametersSanity property), 116
Bool (class in vc2_conformance.string_formatters), 161
bool() (SerDes method), 98
bounded_block() (SerDes method), 100
bounded_block_begin() (BitstreamReader method), 104
bounded_block_begin() (BitstreamWriter method), 105
bounded_block_begin() (SerDes method), 100
bounded_block_end() (BitstreamReader method), 104
bounded_block_end() (BitstreamWriter method), 105
bounded_block_end() (SerDes method), 100
byte_align() (SerDes method), 100
Bytes (class in vc2_conformance.string_formatters), 162
bytes() (SerDes method), 99

C
case_name() (TestCase property), 64

citation() (PseudocodeDerivedFunction property), 145
CleanArea (fixeddict in vc2_conformance.bitstream), 89
clip() (in module vc2_conformance.pseudocode.vc2_math), 142
clip_component() (in module

vc2_conformance.pseudocode.picture_decoding), 136
clip_picture() (in module

vc2_conformance.pseudocode.picture_decoding), 136
codec_features_to_trivial_level_constraints()

(in module vc2_conformance.codec_features), 66
CodecFeatures (fixeddict in vc2_conformance.codec_features),

65
color_diff_depth_sane() (ColorParametersSanity

property), 116
color_diff_format_sane() (ColorParametersSanity

property), 116
COLOR_MATRICES (in module

vc2_conformance.color_conversion), 115
ColorDiffSamplingFormat (fixeddict in

vc2_conformance.bitstream), 88
ColorMatrix (fixeddict in vc2_conformance.bitstream), 89
ColorParametersSanity (class in

vc2_conformance.color_conversion), 116
ColorPrimaries (fixeddict in vc2_conformance.bitstream), 89
ColorSpec (fixeddict in vc2_conformance.bitstream), 89
column (class in vc2_conformance.pseudocode.arrays), 133
compare() (NodeComparator method), 149
compare_functions() (in module verification.compare), 154
compare_sources() (in module verification.compare), 154
ComparisonError, 155
compute_dimensions_and_depths() (in module

vc2_conformance.dimensions_and_depths), 111
computed_value() (SerDes method), 101
Concatenation (class in vc2_conformance.symbol_re), 127
ConformanceError, 72
context() (SerDes property), 101
context_type() (in module vc2_conformance.bitstream.serdes),

103

D
DataUnit (fixeddict in vc2_conformance.bitstream), 87
Dec (class in vc2_conformance.string_formatters), 161
declare_list() (SerDes method), 100
decoder_test_case_generator (in module

vc2_conformance.test_cases), 65
DECODER_TEST_CASE_GENERATOR_REGISTRY (in module

vc2_conformance.test_cases), 65
delete_columns_after() (in module

vc2_conformance.pseudocode.arrays), 133
delete_rows_after() (in module

vc2_conformance.pseudocode.arrays), 133
describe_path() (SerDes method), 102
Deserialiser (class in vc2_conformance.bitstream.serdes), 102
Difference (class in verification.compare), 155
DimensionsAndDepths (class in

vc2_conformance.dimensions_and_depths), 111
dwt() (in module vc2_conformance.pseudocode.picture_encoding),

136

169

SMPTE VC-2 Conformance Software, Release v1.0.1

dwt_pad_addition() (in module
vc2_conformance.pseudocode.picture_encoding), 137

E
ellipsise() (in module vc2_conformance.string_utils), 163
ellipsise_lossy() (in module vc2_conformance.string_utils),

163
encoder_test_case_generator (in module

vc2_conformance.test_cases), 64
ENCODER_TEST_CASE_GENERATOR_REGISTRY (in module

vc2_conformance.test_cases), 65
EncoderTestSequence (class in vc2_conformance.test_cases),

64
END_OF_SEQUENCE (in module vc2_conformance.symbol_re), 126
Entry (class in vc2_conformance.fixeddict), 159
equivalent_nodes() (NFANode method), 127
explain() (ColorParametersSanity method), 117
explain() (ConformanceError method), 72
explain() (UnsatisfiableCodecFeaturesError method), 76
ExtendedTransformParameters (fixeddict in

vc2_conformance.bitstream), 90

F
FileType() (in module vc2_conformance.py2x_compat), 165
filter_bit_shift() (in module

vc2_conformance.pseudocode.picture_decoding), 135
filter_constraint_table() (in module

vc2_conformance.constraint_table), 131
fixeddict() (in module vc2_conformance.fixeddict), 159
fixeddict_to_pseudocode_function (in module

vc2_conformance.bitstream.metadata), 108
FixedDictKeyError, 160
float_to_int() (in module

vc2_conformance.color_conversion), 114
float_to_int_clipped() (in module

vc2_conformance.color_conversion), 114
flush() (BitstreamWriter method), 105
follow() (NFANode method), 127
forward_quant() (in module

vc2_conformance.pseudocode.quantization), 137
forward_wavelet_transform() (in module

vc2_conformance.pseudocode.picture_encoding), 136
FragmentData (fixeddict in vc2_conformance.bitstream), 92
FragmentHeader (fixeddict in vc2_conformance.bitstream), 92
FragmentParse (fixeddict in vc2_conformance.bitstream), 92
FrameRate (fixeddict in vc2_conformance.bitstream), 88
FrameSize (fixeddict in vc2_conformance.bitstream), 88
from_444() (in module vc2_conformance.color_conversion), 114
from_ast() (NFA class method), 127
from_bit_offset() (in module vc2_conformance.bitstream.io),

106
from_xyz() (in module vc2_conformance.color_conversion), 112

G
gcd() (in module vc2_conformance.py2x_compat), 165
generate_test_cases() (Registry method), 65
generic_compare() (NodeComparator method), 150
get_metadata_and_picture_filenames() (in module

vc2_conformance.file_format), 118
get_row_col() (NodeComparator method), 149
get_terminal_size() (in module

vc2_conformance.py2x_compat), 165
green_sane() (ColorParametersSanity property), 116

H
h_analysis() (in module

vc2_conformance.pseudocode.picture_encoding), 137
h_synthesis() (in module

vc2_conformance.pseudocode.picture_decoding), 135
height() (in module vc2_conformance.pseudocode.arrays), 133
Hex (class in vc2_conformance.string_formatters), 160

HQSlice (fixeddict in vc2_conformance.bitstream), 91

I
Identical (class in verification.comparators), 151
idwt() (in module

vc2_conformance.pseudocode.picture_decoding), 135
idwt_pad_removal() (in module

vc2_conformance.pseudocode.picture_decoding), 135
ImpossibleSequenceError, 126
indent() (in module vc2_conformance.string_utils), 163
init_io() (in module vc2_conformance.decoder.io), 71
int_to_float() (in module

vc2_conformance.color_conversion), 114
intlog2() (in module vc2_conformance.pseudocode.vc2_math),

142
intlog2_float() (in module

vc2_conformance.pseudocode.vc2_math), 142
InvalidCodecFeaturesError, 66
INVERSE_COLOR_MATRICES (in module

vc2_conformance.color_conversion), 115
inverse_quant() (in module

vc2_conformance.pseudocode.quantization), 137
INVERSE_TRANSFER_FUNCTIONS (in module

vc2_conformance.color_conversion), 115
inverse_wavelet_transform() (in module

vc2_conformance.pseudocode.picture_decoding), 135
is_allowed_combination() (in module

vc2_conformance.constraint_table), 131
is_auxiliary_data() (in module

vc2_conformance.pseudocode.parse_code_functions),
134

is_complete() (Matcher method), 125
is_disjoint() (ValueSet method), 130
is_end_of_sequence() (in module

vc2_conformance.pseudocode.parse_code_functions),
134

is_end_of_stream() (BitstreamReader method), 103
is_end_of_stream() (BitstreamWriter method), 104
is_fragment() (in module

vc2_conformance.pseudocode.parse_code_functions),
134

is_hq() (in module
vc2_conformance.pseudocode.parse_code_functions),
134

is_ld() (in module
vc2_conformance.pseudocode.parse_code_functions),
134

is_padding_data() (in module
vc2_conformance.pseudocode.parse_code_functions),
134

is_picture() (in module
vc2_conformance.pseudocode.parse_code_functions),
134

is_seq_header() (in module
vc2_conformance.pseudocode.parse_code_functions),
134

is_target_complete() (SerDes method), 101
iter_independent_generators() (Registry method), 65
iter_registered_functions() (Registry method), 65
iter_sequence_headers() (in module

vc2_conformance.encoder.sequence_header), 77
iter_values() (ValueSet method), 130

L
LDSlice (fixeddict in vc2_conformance.bitstream), 91
LEVEL_CONSTRAINT_ANY_VALUES (in module

vc2_conformance.level_constraints), 121
LEVEL_CONSTRAINTS (in module

vc2_conformance.level_constraints), 119
LEVEL_SEQUENCE_RESTRICTIONS (in module

vc2_conformance.level_constraints), 119

170 Index

SMPTE VC-2 Conformance Software, Release v1.0.1

LevelSequenceRestrictions (class in
vc2_conformance.level_constraints), 119

lift1() (in module
vc2_conformance.pseudocode.picture_decoding), 135

lift2() (in module
vc2_conformance.pseudocode.picture_decoding), 135

lift3() (in module
vc2_conformance.pseudocode.picture_decoding), 135

lift4() (in module
vc2_conformance.pseudocode.picture_decoding), 135

linear_ramps() (in module
vc2_conformance.picture_generators), 110

LINEAR_RGB_TO_XYZ (in module
vc2_conformance.color_conversion), 115

List (class in vc2_conformance.string_formatters), 162
luma_depth_sane() (ColorParametersSanity property), 116
luma_vs_color_diff_depths_sane()

(ColorParametersSanity property), 116

M
make_matching_sequence() (in module

vc2_conformance.symbol_re), 125
make_picture_data_units() (in module

vc2_conformance.encoder.pictures), 77
make_pseudocode_traceback() (in module

vc2_conformance.pseudocode.metadata), 146
make_sequence() (in module

vc2_conformance.encoder.sequence), 79
make_sequence_header_data_unit() (in module

vc2_conformance.encoder.sequence_header), 76
makedirs() (in module vc2_conformance.py2x_compat), 165
match_symbol() (Matcher method), 125
Matcher (class in vc2_conformance.symbol_re), 124
matmul_colors() (in module

vc2_conformance.color_conversion), 115
mean() (in module vc2_conformance.pseudocode.vc2_math), 142
metadata() (TestCase property), 64
mid_gray() (in module vc2_conformance.picture_generators),

110
module

vc2_conformance, 59
vc2_conformance.bitstream, 81
vc2_conformance.bitstream.io, 103
vc2_conformance.bitstream.metadata, 108
vc2_conformance.bitstream.serdes, 93
vc2_conformance.bitstream.vc2, 106
vc2_conformance.bitstream.vc2_autofill, 107
vc2_conformance.bitstream.vc2_fixeddicts,

106
vc2_conformance.codec_features, 65
vc2_conformance.color_conversion, 112
vc2_conformance.constraint_table, 128
vc2_conformance.decoder, 69
vc2_conformance.decoder.exceptions, 72
vc2_conformance.decoder.io, 70
vc2_conformance.dimensions_and_depths, 111
vc2_conformance.encoder, 75
vc2_conformance.encoder.exceptions, 76
vc2_conformance.encoder.pictures, 77
vc2_conformance.encoder.sequence, 79
vc2_conformance.encoder.sequence_header, 76
vc2_conformance.file_format, 117
vc2_conformance.fixeddict, 157
vc2_conformance.level_constraints, 119
vc2_conformance.picture_generators, 109
vc2_conformance.pseudocode, 133
vc2_conformance.pseudocode.arrays, 133
vc2_conformance.pseudocode.metadata, 144
vc2_conformance.pseudocode.offsetting, 133
vc2_conformance.pseudocode.parse_code_functions,

134
vc2_conformance.pseudocode.picture_decoding,

135

vc2_conformance.pseudocode.picture_encoding,
136

vc2_conformance.pseudocode.quantization,
137

vc2_conformance.pseudocode.slice_sizes, 138
vc2_conformance.pseudocode.state, 139
vc2_conformance.pseudocode.vc2_math, 142
vc2_conformance.pseudocode.video_parameters,

142
vc2_conformance.py2x_compat, 165
vc2_conformance.scripts.vc2_bitstream_validator,

45
vc2_conformance.scripts.vc2_bitstream_viewer,

51
vc2_conformance.scripts.vc2_picture_compare,

46
vc2_conformance.scripts.vc2_picture_explain,

48
vc2_conformance.scripts.vc2_test_case_generator.cli,

43
vc2_conformance.string_formatters, 160
vc2_conformance.string_utils, 163
vc2_conformance.symbol_re, 122
vc2_conformance.test_cases, 63
verification, 147
verification.amendment_comments, 152
verification.comparators, 151
verification.compare, 154
verification.node_comparator, 148

MonitoredDeserialiser (class in
vc2_conformance.bitstream.serdes), 102

MonitoredSerialiser (class in
vc2_conformance.bitstream.serdes), 102

moving_sprite() (in module
vc2_conformance.picture_generators), 109

MultilineList (class in vc2_conformance.string_formatters),
162

N
name() (TestCase property), 64
nbits() (SerDes method), 99
new_array() (in module vc2_conformance.pseudocode.arrays),

133
NFA (class in vc2_conformance.symbol_re), 127
NFANode (class in vc2_conformance.symbol_re), 127
NodeComparator (class in verification.node_comparator), 149
NodeFieldLengthsDiffer (class in

verification.node_comparator), 151
NodeFieldsDiffer (class in verification.node_comparator),

151
NodeListFieldsDiffer (class in

verification.node_comparator), 151
NodesDiffer (class in verification.node_comparator), 150
NodeTypesDiffer (class in verification.node_comparator), 151
normalise_test_case_generator() (in module

vc2_conformance.test_cases), 64
Number (class in vc2_conformance.string_formatters), 160

O
Object (class in vc2_conformance.string_formatters), 162
Oct (class in vc2_conformance.string_formatters), 161
offending_offset() (ConformanceError method), 72
offset_component() (in module

vc2_conformance.pseudocode.offsetting), 134
offset_component() (in module

vc2_conformance.pseudocode.picture_decoding), 135
offset_picture() (in module

vc2_conformance.pseudocode.offsetting), 133
offset_picture() (in module

vc2_conformance.pseudocode.picture_decoding), 135
oned_analysis() (in module

vc2_conformance.pseudocode.picture_encoding), 137

Index 171

SMPTE VC-2 Conformance Software, Release v1.0.1

oned_synthesis() (in module
vc2_conformance.pseudocode.picture_decoding), 135

P
Padding (fixeddict in vc2_conformance.bitstream), 93
parse_expression() (in module vc2_conformance.symbol_re),

126
parse_regex() (in module vc2_conformance.symbol_re), 127
ParseInfo (fixeddict in vc2_conformance.bitstream), 87
ParseParameters (fixeddict in vc2_conformance.bitstream), 87
path() (SerDes method), 102
picture_dimensions() (in module

vc2_conformance.pseudocode.video_parameters), 143
picture_encode() (in module

vc2_conformance.pseudocode.picture_encoding), 136
PictureHeader (fixeddict in vc2_conformance.bitstream), 90
PictureParse (fixeddict in vc2_conformance.bitstream), 90
PixelAspectRatio (fixeddict in vc2_conformance.bitstream), 88
preset_color_matrix() (in module

vc2_conformance.pseudocode.video_parameters), 143
preset_color_primaries() (in module

vc2_conformance.pseudocode.video_parameters), 143
preset_color_spec() (in module

vc2_conformance.pseudocode.video_parameters), 143
preset_frame_rate() (in module

vc2_conformance.pseudocode.video_parameters), 143
preset_pixel_aspect_ratio() (in module

vc2_conformance.pseudocode.video_parameters), 143
preset_signal_range() (in module

vc2_conformance.pseudocode.video_parameters), 143
preset_transfer_function() (in module

vc2_conformance.pseudocode.video_parameters), 143
pseudocode_derived_functions (in module

vc2_conformance.pseudocode.metadata), 146
pseudocode_function_to_fixeddicts (in module

vc2_conformance.bitstream.metadata), 108
pseudocode_function_to_fixeddicts_recursive (in

module vc2_conformance.bitstream.metadata), 108
PseudocodeDerivedFunction (class in

vc2_conformance.pseudocode.metadata), 145

Q
quant_factor() (in module

vc2_conformance.pseudocode.quantization), 137
quant_offset() (in module

vc2_conformance.pseudocode.quantization), 137
QuantMatrix (fixeddict in vc2_conformance.bitstream), 91
quote() (in module vc2_conformance.py2x_compat), 165

R
read() (in module vc2_conformance.file_format), 117
read_bit() (BitstreamReader method), 104
read_bitarray() (BitstreamReader method), 104
read_bytes() (BitstreamReader method), 104
read_codec_features_csv() (in module

vc2_conformance.codec_features), 66
read_constraints_from_csv() (in module

vc2_conformance.constraint_table), 132
read_metadata() (in module vc2_conformance.file_format),

117
read_nbits() (BitstreamReader method), 104
read_picture() (in module vc2_conformance.file_format), 118
read_sint() (BitstreamReader method), 104
read_uint() (BitstreamReader method), 104
read_uint_lit() (BitstreamReader method), 104
record_bitstream_finish() (in module

vc2_conformance.decoder.io), 71
record_bitstream_start() (in module

vc2_conformance.decoder.io), 71
red_sane() (ColorParametersSanity property), 116
ref_pseudocode() (in module

vc2_conformance.pseudocode.metadata), 144

register_test_case_generator() (Registry method), 65
Registry (class in vc2_conformance.test_cases), 65
remove_offset_component() (in module

vc2_conformance.pseudocode.offsetting), 134
remove_offset_component() (in module

vc2_conformance.pseudocode.picture_encoding), 137
remove_offset_picture() (in module

vc2_conformance.pseudocode.offsetting), 134
remove_offset_picture() (in module

vc2_conformance.pseudocode.picture_encoding), 137
repeat_pictures() (in module

vc2_conformance.picture_generators), 111
reset_state() (in module vc2_conformance.pseudocode.state),

141
row() (in module vc2_conformance.pseudocode.arrays), 133

S
sanity_check_video_parameters() (in module

vc2_conformance.color_conversion), 116
ScanFormat (fixeddict in vc2_conformance.bitstream), 88
seek() (BitstreamReader method), 104
seek() (BitstreamWriter method), 105
Sequence (fixeddict in vc2_conformance.bitstream), 86
SequenceHeader (fixeddict in vc2_conformance.bitstream), 87
SerDes (class in vc2_conformance.bitstream.serdes), 98
SerdesChangesOnly (class in verification.comparators), 151
Serialiser (class in vc2_conformance.bitstream.serdes), 102
set_coding_parameters() (in module

vc2_conformance.pseudocode.video_parameters), 143
set_context_type() (SerDes method), 100
set_source_defaults() (in module

vc2_conformance.pseudocode.video_parameters), 143
sign() (in module vc2_conformance.pseudocode.vc2_math), 142
SignalRange (fixeddict in vc2_conformance.bitstream), 89
sint() (SerDes method), 99
slice_bottom() (in module

vc2_conformance.pseudocode.slice_sizes), 138
slice_bytes() (in module

vc2_conformance.pseudocode.slice_sizes), 138
slice_left() (in module

vc2_conformance.pseudocode.slice_sizes), 138
slice_right() (in module

vc2_conformance.pseudocode.slice_sizes), 138
slice_top() (in module

vc2_conformance.pseudocode.slice_sizes), 138
SliceParameters (fixeddict in vc2_conformance.bitstream), 91
slices_have_same_dimensions() (in module

vc2_conformance.pseudocode.slice_sizes), 138
SourceParameters (fixeddict in vc2_conformance.bitstream), 88
split_into_line_wrap_blocks() (in module

vc2_conformance.string_utils), 163
Star (class in vc2_conformance.symbol_re), 127
State (fixeddict in vc2_conformance.pseudocode.state), 139
static_sprite() (in module

vc2_conformance.picture_generators), 110
Stream (fixeddict in vc2_conformance.bitstream), 86
string_types (in module vc2_conformance.py2x_compat), 165
subband_height() (in module

vc2_conformance.pseudocode.slice_sizes), 138
subband_width() (in module

vc2_conformance.pseudocode.slice_sizes), 138
subcase_name() (TestCase property), 64
subcontext() (SerDes method), 101
subcontext_enter() (SerDes method), 101
subcontext_leave() (SerDes method), 101
swap_primaries() (in module

vc2_conformance.color_conversion), 115
Symbol (class in vc2_conformance.symbol_re), 127
SymbolRegexSyntaxError, 126
SYNTHESIS_LIFTING_FUNCTION_TYPES (in module

vc2_conformance.pseudocode.picture_decoding), 136

172 Index

SMPTE VC-2 Conformance Software, Release v1.0.1

T
tell() (BitstreamReader method), 103
tell() (BitstreamWriter method), 105
tell() (in module vc2_conformance.decoder.io), 71
TestCase (class in vc2_conformance.test_cases), 63
to_444() (in module vc2_conformance.color_conversion), 114
to_bit_offset() (in module vc2_conformance.bitstream.io),

106
to_xyz() (in module vc2_conformance.color_conversion), 112
tokenize_regex() (in module vc2_conformance.symbol_re),

126
TRANSFER_FUNCTIONS (in module

vc2_conformance.color_conversion), 115
TransferFunction (fixeddict in vc2_conformance.bitstream), 90
TransformData (fixeddict in vc2_conformance.bitstream), 91
TransformParameters (fixeddict in

vc2_conformance.bitstream), 90
try_read_bitarray() (BitstreamReader method), 104

U
uint() (SerDes method), 99
uint_lit() (SerDes method), 99
UnclosedNotInSpecBlockError, 154
undo_amendments() (in module

verification.amendment_comments), 153
Union (class in vc2_conformance.symbol_re), 127
UnmatchedNotInSpecBlockError, 154
UnsatisfiableCodecFeaturesError, 76
unwrap() (in module vc2_conformance.py2x_compat), 165
using_dc_prediction() (in module

vc2_conformance.pseudocode.parse_code_functions),
134

V
valid_next_symbols() (Matcher method), 125
value() (TestCase property), 64
ValueSet (class in vc2_conformance.constraint_table), 129
vc2_conformance

module, 59
vc2_conformance.bitstream

module, 81
vc2_conformance.bitstream.io

module, 103
vc2_conformance.bitstream.metadata

module, 108
vc2_conformance.bitstream.serdes

module, 93
vc2_conformance.bitstream.vc2

module, 106
vc2_conformance.bitstream.vc2_autofill

module, 107
vc2_conformance.bitstream.vc2_fixeddicts

module, 106
vc2_conformance.codec_features

module, 65
vc2_conformance.color_conversion

module, 112
vc2_conformance.constraint_table

module, 128
vc2_conformance.decoder

module, 69
vc2_conformance.decoder.exceptions

module, 72
vc2_conformance.decoder.io

module, 70
vc2_conformance.dimensions_and_depths

module, 111
vc2_conformance.encoder

module, 75
vc2_conformance.encoder.exceptions

module, 76
vc2_conformance.encoder.pictures

module, 77
vc2_conformance.encoder.sequence

module, 79
vc2_conformance.encoder.sequence_header

module, 76
vc2_conformance.file_format

module, 117
vc2_conformance.fixeddict

module, 157
vc2_conformance.level_constraints

module, 119
vc2_conformance.picture_generators

module, 109
vc2_conformance.pseudocode

module, 133
vc2_conformance.pseudocode.arrays

module, 133
vc2_conformance.pseudocode.metadata

module, 144
vc2_conformance.pseudocode.offsetting

module, 133
vc2_conformance.pseudocode.parse_code_functions

module, 134
vc2_conformance.pseudocode.picture_decoding

module, 135
vc2_conformance.pseudocode.picture_encoding

module, 136
vc2_conformance.pseudocode.quantization

module, 137
vc2_conformance.pseudocode.slice_sizes

module, 138
vc2_conformance.pseudocode.state

module, 139
vc2_conformance.pseudocode.vc2_math

module, 142
vc2_conformance.pseudocode.video_parameters

module, 142
vc2_conformance.py2x_compat

module, 165
vc2_conformance.scripts.vc2_bitstream_validator

module, 45
vc2_conformance.scripts.vc2_bitstream_viewer

module, 51
vc2_conformance.scripts.vc2_picture_compare

module, 46
vc2_conformance.scripts.vc2_picture_explain

module, 48
vc2_conformance.scripts.vc2_test_case_generator.cli

module, 43
vc2_conformance.string_formatters

module, 160
vc2_conformance.string_utils

module, 163
vc2_conformance.symbol_re

module, 122
vc2_conformance.test_cases

module, 63
vc2_default_values (in module

vc2_conformance.bitstream.vc2_fixeddicts), 106
vc2_default_values_with_auto (in module

vc2_conformance.bitstream.vc2_autofill), 108
vc2_fixeddict_nesting (in module

vc2_conformance.bitstream.vc2_fixeddicts), 106
verification

module, 147
verification.amendment_comments

module, 152
verification.comparators

module, 151
verification.compare

module, 154
verification.node_comparator

module, 148

Index 173

SMPTE VC-2 Conformance Software, Release v1.0.1

verify_complete() (SerDes method), 101
vh_analysis() (in module

vc2_conformance.pseudocode.picture_encoding), 137
vh_synthesis() (in module

vc2_conformance.pseudocode.picture_decoding), 135
video_depth() (in module

vc2_conformance.pseudocode.video_parameters), 143
VideoParameters (fixeddict in

vc2_conformance.pseudocode.video_parameters), 142

W
WaveletTransform (fixeddict in vc2_conformance.bitstream), 90
white_noise() (in module

vc2_conformance.picture_generators), 110
white_sane() (ColorParametersSanity property), 116
width() (in module vc2_conformance.pseudocode.arrays), 133
WILDCARD (in module vc2_conformance.symbol_re), 126
wrap_blocks() (in module vc2_conformance.string_utils), 164
wrap_paragraphs() (in module vc2_conformance.string_utils),

164
wraps() (in module vc2_conformance.py2x_compat), 165
write() (in module vc2_conformance.file_format), 117
write_bit() (BitstreamWriter method), 105
write_bitarray() (BitstreamWriter method), 105
write_bytes() (BitstreamWriter method), 105
write_metadata() (in module vc2_conformance.file_format),

118
write_nbits() (BitstreamWriter method), 105
write_picture() (in module vc2_conformance.file_format),

118
write_sint() (BitstreamWriter method), 106
write_uint() (BitstreamWriter method), 105
write_uint_lit() (BitstreamWriter method), 105

X
XYZ_TO_LINEAR_RGB (in module

vc2_conformance.color_conversion), 115

Z
zip() (in module vc2_conformance.py2x_compat), 165
zip_longest() (in module vc2_conformance.py2x_compat), 165

174 Index

	Introduction
	I User’s manual
	User’s guide (for codec testers)
	Introduction
	Conformance Software Installation
	Video file format
	Generating test cases
	VC-2 decoder conformance testing procedure
	VC-2 encoder conformance testing procedure
	Testing additional bitstreams’ conformance
	Generating static wavelet filter analyses
	Codec debugging suggestions
	Conformance test limtations

	Software tools reference
	vc2-test-case-generator
	vc2-bitstream-validator
	vc2-picture-compare
	vc2-picture-explain
	vc2-bitstream-viewer

	II Maintainer’s manual
	Conformance software development guide
	Development setup
	vc2_conformance internals overview

	Test case generation
	vc2_conformance.test_cases: VC-2 codec test case generation
	vc2_conformance.codec_features: Codec feature definitions

	vc2_conformance.decoder: Reference decoder and bitstream validator
	Usage
	Overview
	Stream I/O
	Conformance exceptions
	Sequence composition restrictions
	Level constraints

	vc2_conformance.encoder: Internal VC-2 encoder
	Usage
	Bitstream conformance
	Exceptions
	Sequence header generation
	Picture encoding & compression
	Sequence generation
	Level constraints

	vc2_conformance.bitstream: Bitstream manipulation module
	How the serialiser/deserialiser module is used
	Quick-start guide
	Deserialised VC-2 bitstream data types
	serdes: A serialiser/deserialiser framework
	Low-level bitstream IO
	Fixeddicts and pseudocode
	Autofill
	Metadata

	Test picture generation reference
	vc2_conformance.picture_generators: Picture generators
	vc2_conformance.dimensions_and_depths: Picture dimension and depth calculation
	vc2_conformance.color_conversion: Color conversion routines
	vc2_conformance.file_format: Picture file format I/O

	Level constraint checking/solving reference
	vc2_conformance.level_constraints: Level constraint definitions
	vc2_conformance.symbol_re: Regular expressions for VC-2 sequences
	vc2_conformance.constraint_table: A simple constraints model

	vc2_conformance.pseudocode: VC-2 pseudocode function implementations
	vc2_conformance.pseudocode.arrays
	vc2_conformance.pseudocode.offsetting
	vc2_conformance.pseudocode.parse_code_functions
	vc2_conformance.pseudocode.picture_decoding
	vc2_conformance.pseudocode.picture_encoding
	vc2_conformance.pseudocode.quantization
	vc2_conformance.pseudocode.slice_sizes
	vc2_conformance.pseudocode.state
	vc2_conformance.pseudocode.vc2_math
	vc2_conformance.pseudocode.video_parameters
	vc2_conformance.pseudocode.metadata

	Automated Static Code Verification
	Pseudocode deviations
	Amendment comments
	Internals

	Utility module references
	vc2_conformance.fixeddict: Fixed-key dictionaries
	vc2_conformance.string_formatters: Value-to-string formatting utilities
	vc2_conformance.string_utils: String formatting utilities
	vc2_conformance.py2x_compat: Python 3.x backports

	Bibliography
	Index

